12 research outputs found

    The erythropoietin-derived peptide MK-X and erythropoietin have neuroprotective effects against ischemic brain damage

    Get PDF
    Erythropoietin (EPO) has been well known as a hematopoietic cytokine over the past decades. However, recent reports have demonstrated that EPO plays a neuroprotective role in the central nervous system, and EPO has been considered as a therapeutic target in neurodegenerative diseases such as ischemic stroke. Despite the neuroprotective effect of EPO, clinical trials have shown its unexpected side effects, including undesirable proliferative effects such as erythropoiesis and tumor growth. Therefore, the development of EPO analogs that would confer neuroprotection without adverse effects has been attempted. In this study, we examined the potential of a novel EPO-based short peptide, MK-X, as a novel drug for stroke treatment in comparison with EPO. We found that MK-X administration with reperfusion dramatically reduced brain injury in an in vivo mouse model of ischemic stroke induced by middle cerebral artery occlusion, whereas EPO had little effect. Similar to EPO, MK-X efficiently ameliorated mitochondrial dysfunction followed by neuronal death caused by glutamate-induced oxidative stress in cultured neurons. Consistent with this effect, MK-X significantly decreased caspase-3 cleavage and nuclear translocation of apoptosis-inducing factor induced by glutamate. MK-X completely mimicked the effect of EPO on multiple activation of JAK2 and its downstream PI3K/AKT and ERK1/2 signaling pathways, and this signaling process was involved in the neuroprotective effect of MK-X. Furthermore, MK-X and EPO induced similar changes in the gene expression patterns under glutamate-induced excitotoxicity. Interestingly, the most significant difference between MK-X and EPO was that MK-X better penetrated into the brain across the brain-blood barrier than did EPO. In conclusion, we suggest that MK-X might be used as a novel drug for protection from brain injury caused by ischemic stroke, which penetrates into the brain faster in comparison with EPO, even though MK-X and EPO have similar protective effects against excitotoxicity.1

    Neuroprotective Effects of an Erythropoietin-Derived Peptide in PC12 Cells under Oxidative Stress

    No full text
    Erythropoietin (EPO) has been shown to be a key cytokine in the production of erythrocytes from erythroblasts. Recently, attempts have been made to adopt EPO as a drug target for neuroprotection in selected neurological pathologies. In the current study, a novel EPO-derived peptide which mimics the weak binding site of EPO to its receptor (MK-X) was generated. Experimental results demonstrated that MK-X was able to ameliorate neuronal death due to reactive oxygen species and conditions of oxidative stress similar to EPO. In addition, MK-X induced long-lasting Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and Akt activation. Furthermore, treatment with inhibitors of ERK1/2 and Akt abolished the neuroprotective effect of MK-X. Unlike EPO, however, MK-X did not induce cellular proliferation. Collectively, the results of the current study suggested that MK-X may be useful as a novel neuroprotective reagent. © 2016 Bentham Science Publishers.1

    Differential cell death and Bcl-2 expression in the mouse retina after glutathione decrease by systemic D,L-buthionine sulphoximine administration

    No full text
    Glutathione (GSH) plays a critical role in cellular defense against unregulated oxidative stress in mammalian cells including neurons. We previously demonstrated that GSH decrease using [D, L]-buthionine sulphoximine (BSO) induces retinal cell death, but the underlying mechanisms of this are still unclear. Here, we demonstrated that retinal GSH level is closely related to retinal cell death as well as expression of an anti-apoptotic molecule, Bcl-2, in the retina. We induced differential expression of retinal GSH by single and multiple administrations of BSO, and examined retinal GSH levels and retinal cell death in vivo. Single BSO administration showed a transient decrease in the retinal GSH level, whereas multiple BSO administration showed a persistent decrease in the retinal GSH level. Retinal cell death also showed similar patterns: transient increases of retinal cell death were observed after single BSO administration, whereas persistent increases of retinal cell death were observed after multiple BSO administration. Changes in the retinal GSH level affected Bcl-2 expression in the retina. Immunoblot and immunohistochemical analyses showed that single and multiple administration of BSO induced differential expressions of Bcl-2 in the retina. Taken together, the results of our study suggest that the retinal GSH is important for the survival of retinal cells, and retinal GSH appears to be deeply related to Bcl-2 expression in the retina. Thus, alteration of Bcl-2 expression may provide a therapeutic tool for retinal degenerative diseases caused by retinal oxidative stress such as glaucoma or retinopathy. © 2013 The Korean Society for Molecular and Cellular Biology and Springer Netherlands.

    Erythropoietin promotes hair shaft growth in cultured human hair follicles and modulates hair growth in mice

    No full text
    Background: Recent studies have shown that erythropoietin (EPO)/erythropoietin receptor (EPOR) signaling exist in both human and mouse hair follicles (HFs). Objective: To investigate whether dermal papilla cells (DPCs) express functional EPOR and, if so, to investigate effects of EPO on hair shaft growth in cultured human scalp hair follicles and hair growth in mice. Methods: EPOR expression in DPCs and follicular keratinocytes was examined by RT-PCR and immunoblot. Phosphorylation of EPOR signaling pathway mediators by EPO treatment was examined by immunoblot. MTT assay was employed to check cell viability after EPO treatment. Hair shaft growth was measured in the absence or presence of EPO and matrix keratinocyte proliferation was examined by Ki-67 immunostaining in cultured hair follicles. Agarose beads containing EPO were implanted into dorsal skin of C57BL/6 mice to examine effects of EPO on hair growth in vivo. Results: EPOR mRNA and protein are expressed in cultured human DPCs. EPOR signaling pathway mediators such as EPOR and Akt are phosphorylated by EPO in DPCs. EPO significantly promoted the growth of DPCs and elongated hair shafts with increased proliferation of matrix keratinocytes in cultured human hair follicles. In addition, EPO not only promoted anagen induction from telogen but also prolonged anagen phase. Conclusions: EPO may modulate hair growth by stimulating DPCs that express functional EPOR. © 2010 Japanese Society for Investigative Dermatology.
    corecore