444 research outputs found

    Social Impacts of the Asian Crisis: Policy Challenges and Lessons

    Get PDF
    human development, economic growth, globalization, inequality, poverty

    Interference Alignment Through User Cooperation for Two-cell MIMO Interfering Broadcast Channels

    Full text link
    This paper focuses on two-cell multiple-input multiple-output (MIMO) Gaussian interfering broadcast channels (MIMO-IFBC) with KK cooperating users on the cell-boundary of each BS. It corresponds to a downlink scenario for cellular networks with two base stations (BSs), and KK users equipped with Wi-Fi interfaces enabling to cooperate among users on a peer-to-peer basis. In this scenario, we propose a novel interference alignment (IA) technique exploiting user cooperation. Our proposed algorithm obtains the achievable degrees of freedom (DoF) of 2K when each BS and user have M=K+1M=K+1 transmit antennas and N=KN=K receive antennas, respectively. Furthermore, the algorithm requires only a small amount of channel feedback information with the aid of the user cooperation channels. The simulations demonstrate that not only are the analytical results valid, but the achievable DoF of our proposed algorithm also outperforms those of conventional techniques.Comment: This paper will appear in IEEE GLOBECOM 201

    Monitoring The Evolutionary Patterns of Technological Advances Based On the Dynamic Patent Lattice: A Modified Formal Concept Analysis Approach

    Get PDF
    The strategic importance of monitoring changes in technology has been highlighted for achieving and maintaining firms’ competitive positions. In this respect, among others, patent citation analysis has been the most frequently adopted tool. However, it is subject to some drawbacks that stem from only consideration of citing-cited information and time lags between citing and cited patents. In response, we propose a modified formal concept analysis (FCA) approach to developing dynamic patent lattice that can analyze the complex relations among patents and evolutionary patterns of technological advances. The FCA is a mathematical tool for grouping objects with shared properties based on the lattice theory. The distinct strength of FCA, vis-á-vis other methods, lies in structuring and displaying the relations among objects in the amount of data. The FCA is modified to take time periods into account for the purpose of technology monitoring. Specifically, patents are first collected and transformed into structured data. Next, the dynamic patent lattice is developed by executing a modified FCA algorithm based on patent context. Finally, quantitative indexes are defined and gauged to conduct a more detailed analysis and obtain richer information. The proposed dynamic patent lattice can be effectively employed to aid decision making in technology monitoring

    The Minimum Scheduling Time for Convergecast in Wireless Sensor Networks

    Get PDF
    We study the scheduling problem for data collection from sensor nodes to the sink node in wireless sensor networks, also referred to as the convergecast problem. The convergecast problem in general network topology has been proven to be NP-hard. In this paper, we propose our heuristic algorithm (finding the minimum scheduling time for convergecast (FMSTC)) for general network topology and evaluate the performance by simulation. The results of the simulation showed that the number of time slots to reach the sink node decreased with an increase in the power. We compared the performance of the proposed algorithm to the optimal time slots in a linear network topology. The proposed algorithm for convergecast in a general network topology has 2.27 times more time slots than that of a linear network topology. To the best of our knowledge, the proposed method is the first attempt to apply the optimal algorithm in a linear network topology to a general network topology

    Lessons from the 1997 and 2008 Crises in Korea

    Get PDF

    SignBLEU: Automatic Evaluation of Multi-channel Sign Language Translation

    Full text link
    Sign languages are multi-channel languages that communicate information through not just the hands (manual signals) but also facial expressions and upper body movements (non-manual signals). However, since automatic sign language translation is usually performed by generating a single sequence of glosses, researchers eschew non-manual and co-occurring manual signals in favor of a simplified list of manual glosses. This can lead to significant information loss and ambiguity. In this paper, we introduce a new task named multi-channel sign language translation (MCSLT) and present a novel metric, SignBLEU, designed to capture multiple signal channels. We validated SignBLEU on a system-level task using three sign language corpora with varied linguistic structures and transcription methodologies and examined its correlation with human judgment through two segment-level tasks. We found that SignBLEU consistently correlates better with human judgment than competing metrics. To facilitate further MCSLT research, we report benchmark scores for the three sign language corpora and release the source code for SignBLEU at https://github.com/eq4all-projects/SignBLEU.Comment: Published in LREC-Coling 202

    Single-shot 3D coherent diffractive imaging of core-shell nanoparticles with elemental specificity

    Get PDF
    We report 3D coherent diffractive imaging (CDI) of Au/Pd core-shell nanoparticles with 6.1 nm spatial resolution with elemental specificity. We measured single-shot diffraction patterns of the nanoparticles using intense x-ray free electron laser pulses. By exploiting the curvature of the Ewald sphere and the symmetry of the nanoparticle, we reconstructed the 3D electron density of 34 core-shell structures from these diffraction patterns. To extract 3D structural information beyond the diffraction signal, we implemented a super-resolution technique by taking advantage of CDI's quantitative reconstruction capabilities. We used high-resolution model fitting to determine the Au core size and the Pd shell thickness to be 65.0 +/- 1.0 nm and 4.0 +/- 0.5 nm, respectively. We also identified the 3D elemental distribution inside the nanoparticles with an accuracy of 3%. To further examine the model fitting procedure, we simulated noisy diffraction patterns from a Au/Pd core-shell model and a solid Au model and confirmed the validity of the method. We anticipate this super-resolution CDI method can be generally used for quantitative 3D imaging of symmetrical nanostructures with elemental specificity.111Ysciescopu
    corecore