86 research outputs found

    Study on the adaptability and optimization of boom replacement methods for suspension bridges

    Get PDF
    To ensure the safe operation of bridges, the study of methods and techniques for boom replacement has become a crucial aspect of the scientific maintenance of suspension bridges. This study focuses on analyzing the bridge responses and evaluating the applicability of three different boom replacement methods: single-point, three-point and five-point, using finite element calculations. A sea-crossing suspension bridge is taken as a case study to simulate the process of boom replacement using temporary booms. Consequently, the optimal replacement method for booms of varying lengths is determined. Meanwhile, this research proposes a quantitative basis for classifying boom lengths based on calculation data and analysis results to determine the suitable boom lengths for different replacement methods. Besides, a comparison of the relationship between the force transmission efficiency of temporary booms and boom length reveals that longer booms exhibit lower force transmission efficiency, with the efficiency decreasing at a faster rate as boom length increases. Overall, these findings provide a theoretical basis for the study of boom replacement in suspension bridges

    Expression of apolipoprotein M in human hepatocellular carcinoma tissues

    Get PDF
    The present study examined mRNA levels and protein mass of apolipoprotein M (apoM) in human hepatocellular carcinoma (HCC) tissues and in the adjacent tissues. Plasma apoM levels in these HCC patients were also determined and compared to the normal subjects. The mean level of plasma apoM in the HCC patients was 0.61 +/- 0.30 OD mm(-2), which was significantly higher than that in the normal subjects 0.37 +/- 0.07 OD mm(-2) (P < 0.01). However, both apoM mRNA levels and apoM protein mass in the HCC tissues were significantly lower than in the adjacent tissues (P < 0.05). It is concluded that human hepatocellular carcinoma tissues had a reduced capacity to produce apoM than the adjacent non-tumor tissues. However, the plasma apoM levels were higher in the HCC patients than in normal subjects, which suggested that tissues adjacent to the tumors or extra-hepatic apoM production in the HCC patients may contribute to the higher plasma apoM levels in these patients. The clinical significance of apoM in relation to HCC still needs further investigation. (C) 2009 Published by Elsevier GmbH

    Chemoenzymatically synthesized ganglioside GM3 analogues with inhibitory effects on tumor cell growth and migration

    Get PDF
    Ganglioside GM3, belonging to glycosphingolipid family, has been known as tumor-associated carbohydrate antigen on several types of tumor. Many studies have revealed that GM3 plays a role in cell proliferation, adhesion and differentiation, which is crucial in the process of cancer development. In the present study, we firstly synthesized novel mannose-containing GM3 analogues by enzymatic hydrolysis and chemical procedures. Then the antiproliferative activity of the novel analogues along with galactose-containing analogues we prepared previously was investigated and the data demonstrated that these analogues exhibited antiproliferative effect on K562 and HCT116 cells. Finally, the influence of these analogues on tumor cell migration was studied on B16, B16-F10 and HCCLM3 cells by wound healing test, because the migration of tumor cells represents one of the relevant factors in assessing the malignancy of cancer. This study could lay the foundation for optimizing leading compounds and provide valuable information for finding new antitumor drugs for cancer therapy

    Immobilized enzyme reactors based on nucleoside phosphorylases and 2′-deoxyribosyltransferase for the in-flow synthesis of pharmaceutically relevant nucleoside analogues

    Get PDF
    In this work, a mono- and a bi-enzymatic analytical immobilized enzyme reactors (IMERs) were developed as prototypes for biosynthetic purposes and their performances in the in-flow synthesis of nucleoside analogues of pharmaceutical interest were evaluated. Two biocatalytic routes based on nucleoside 2′-deoxyribosyltransferase from Lactobacillus reuteri (LrNDT) and uridine phosphorylase from Clostridium perfrigens (CpUP)/purine nucleoside phosphorylase from Aeromonas hydrophila (AhPNP) were investigated in the synthesis of 2′-deoxy, 2′,3′-dideoxy and arabinonucleoside derivatives. LrNDT-IMER catalyzed the synthesis of 5-fluoro-2′-deoxyuridine and 5-iodo-2′-deoxyuridine in 65–59% conversion yield, while CpUP/AhPNP-IMER provided the best results for the preparation of arabinosyladenine (60% conversion yield). Both IMERs proved to be promising alternatives to chemical routes for the synthesis of nucleoside analogues. The developed in-flow system represents a powerful tool for the fast production on analytical scale of nucleosides for preliminary biological tests

    Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation

    Get PDF
    National Basic Research Program of China [2011CBA00508]; National Natural Science Foundation of China [21171142]; program for New Century Excellent Talents in University [NCET-11-0294]; Fundamental Research Funds for the Central UniversitiesUltrathin Rh nanosheets with a thickness of approximately 1 nm were synthesized via a simple surfactant-free hydrothermal route, using Rh(II) acetylacetonate as the precursor and formaldehyde as the shape controller. CO and H-2 originating from the formaldehyde decomposition played key roles in the formation of ultrathin Rh nanosheets

    IL-1β-Mediated Up-Regulation of WT1D via miR-144-3p and Their Synergistic Effect with NF-κB/COX-2/HIF-1α Pathway on Cell Proliferation in LUAD

    Get PDF
    Background/Aims: IL-1β is an important mediator of “inflammation-cancer" transformation through IL-1β/NF-κB/COX-2/HIF-1α signaling pathway, whereas certain portion of patients with lung adenocarcinoma (LUAD) still suffer from rapid tumor progression in clinical practice, indicating the occurrence of potential bypass. Methods: Real-time polymerase chain reaction was applied to examine the expressions of mir-144-3p, WT1, NF-κB, COX2 and HIF-1α at the mRNA level in 127 LUAD samples and corresponding adjacent tissues. miR-144-3p mimic and antagormiR were used to trigger activation and suppression of miR-144-3p in A549 cells, respectively. MTT assay and Western blotting analysis were carried out to evaluate the cell proliferation. Stable clones with over-expression or knockdown of WT1 were generated with plasmid or shRNA by lentiviral vector technology in H1568 and H1650 NSCLC cell lines, respectively. Dual luciferase reporter assay was performed to validate the effect of miR-144-3p on WT1D. Xenograft model was established for in vivo experiment, and TCGA data were extracted for validation. Results: miR-144-3p could suppress the WT1D expression at the post-transcriptional level, hence regulating cell proliferation in LUAD. WT1 and COX-2 were independent prognostic factors of LUAD patients. In addition, inhibition of IL-1β/miR-144-3p/WT1D and IL-1β/NF-κB/COX-2/HIF-1α pathways using miR-144-3p mimic and Celecoxib, respectively, displayed synergistic suppressive effect on cell proliferation in LUAD. Conclusion: A de novo IL-1β/miR-144-3p/WT1D axis was involved in proliferative regulation of LUAD. Moreover, simultaneous blockade of both IL-1β/miR-144-3p/WT1D and IL-1β/NF-κB/COX-2/ HIF-1α pathways might have synergistic suppressive effect on cell proliferation in LUAD

    A nanobody-based molecular toolkit for ubiquitin–proteasome system explores the main role of survivin subcellular localization

    Get PDF
    Targeted protein degradation is a powerful tool for determining the function of specific proteins nowadays. Survivin is the smallest member of the inhibitor of the apoptosis protein (IAP) family. It exists in the cytoplasm and nucleus of cells, but the exact function of survivin in different subcellular locations retained unclear updates due to the lack of effective and simple technical means. In this study, we created a novel nanoantibody-based molecular toolkit, namely, the ubiquitin–proteasome system (Nb4A-Fc-T2A-TRIM21), that can target to degrade survivin localized in cytoplasmic and cell nuclear by ubiquitinating, and by which to verify the potential roles of survivin subcellular localization. Also, the results showed that the cytoplasmic survivin mainly plays an anti-apoptotic function by directly or indirectly inhibiting the caspase pathway, and the nuclear survivin mainly promotes cell proliferation and participates in the regulation of the cell cycle. In addition, the Nb4A-Fc-T2A-TRIM21 system can degrade the endogenous survivin protein in a large amount by the ubiquitin–proteasome pathway, and the system can provide theoretical support for ubiquitination degradation targeting other endogenous proteins

    Prognostic Significance of miR-181b and miR-21 in Gastric Cancer Patients Treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin

    Get PDF
    Background: The goal of this study is to evaluate the effectiveness of S-1/Oxaliplatin vs. Doxifluridine/Oxaliplatin regimen and to identify miRNAs as potential prognostic biomarkers in gastric cancer patients. The expression of candidate miRNAs was quantified from fifty-five late stage gastric cancer FFPE specimens. Experimental Design: Gastric cancer patients with KPS>70 were recruited for the trial. The control group was treated with 400 mg/twice/day Doxifluridine plus i.v. with Oxaliplatin at 130 mg/m 2/first day/4 week cycle. The testing group was treated with S-1 at 40 mg/twice/day/4 week cycle plus i.v. with Oxaliplatin at 130 mg/m 2/first day/4 week cycle. Total RNAs were extracted from normal and gastric tumor specimens. The levels of miRNAs were quantified using real time qRT-PCR expression analysis. Results: The overall objective response rate (CR+PR) of patients treated with S-1/Oxaliplatin was 33.3% (CR+PR) vs. 17.6% (CR+PR) with Doxifluridine/Oxaliplatin for advanced stage gastric cancer patients. The average overall survival for patients treated with S-1/Oxaliplatin was 7.80 month vs. 7.30 month with patients treated with Doxifluridine/Oxaliplatin. The expression of miR-181b (P = 0.022) and miR-21 (P = 0.0029) was significantly overexpressed in gastric tumors compared to normal gastric tissues. Kaplan-Meier survival analysis revealed that low levels of miR-21 expression (Log rank test, hazard ratio: 0.17, CI = 0.06-0.45; P = 0.0004) and miR-181b (Log rank test, hazard ratio: 0.37, CI = 0.16-0.87; P = 0.018) are closely associated with better patient's overall survival for both S-1 and Doxifluridine based regimens. Conclusion: Patients treated with S-1/Oxaliplatin had a better response than those treated with Doxifluridine/Oxaliplatin. miR-21 and miR-181b hold great potential as prognostic biomarkers in late stage gastric cancer. © 2011 Jiang et al
    corecore