50 research outputs found

    Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites

    Get PDF
    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity.This work was supported by grants AGL2011-30568-C02/ALI from the Spanish Ministry of Science and Innovation, and AGR1423 from the Consejería de Economía, Innovación y Ciencia, Junta de Andalucía, Spain. Z.M. acknowledges FPU program scholarships from MEC, Spain. S.M. is funded by grant PTA2011-479-I from the Spanish Ministry of Science and Innovation

    Impact des modes de fonctionnement d'un générateur diesel sur un micro réseau à courant continu autonome et stratégies de contrôle impliquant un supercondensateur

    No full text
    La nature intermittente et aléatoire des sources renouvelables, telles que le photovoltaïque et l’éolien, nécessite un complément de stockage, tel une batterie et un système de secours énergétique, tel un générateur diesel, en particulier dans un système autonome. En ce qui concerne le générateur diesel, il a besoin d'un certain temps pour démarrer et il ne peut pas donner immédiatement la puissance nécessaire, en raison de son comportement dynamique. Alors, la qualité de l'énergie est abaissée pendant cette période en raison du manque de puissance. Par conséquent, pendant la période de démarrage du générateur diesel, un supercondensateur est suggéré pour équilibrer la puissance en raison de sa réponse rapide et de sa densité de puissance élevée. Une stratégie de contrôle de puissance est proposée pour réaliser la coordination entre le générateur diesel et le supercondensateur. La simulation et les résultats expérimentaux montrent que la stratégie de contrôle proposée est capable de réguler la tension du bus continu dans des limites acceptables et d’alimenter la charge pendant la sous production d'énergie renouvelable ou lors d'augmentation de la demande de la charge. De plus, le supercondensateur peut également être utilisé pour surmonter les limites de stockage électrochimique telles que son état de charge et son courant maximal. Ainsi, cette thèse propose le contrôle de puissance en temps réel pour un micro réseau continu avec un système hybride photovoltaïque-batterie-supercondensateur-diesel, visant à répondre à la demande de puissance de charge avec fiabilité et à stabiliser de la tension du bus continu. La simulation et les résultats expérimentaux montrent également que la stratégie de contrôle améliore les performances dynamiques et statiques du micro réseau continu pour différentes conditions de fonctionnement. De plus, afin de minimiser le coût énergétique du groupe diesel, le coût du carburant et la consommation de carburant sont analysés à travers plusieurs tests expérimentaux. Par conséquent, la valeur optimale de sa production d'énergie est déduite et appliquée dans une nouvelle stratégie de gestion de la puissance est proposée. Cette stratégie peut atteindre l'objectif de maximiser l'utilisation de l'énergie photovoltaïque et de prendre en compte la caractéristique de démarrage lent et le coût énergétique du générateur diesel. Les simulations et expérimentations sont réalisées en utilisant des données photovoltaïques réelles pour illustrer les performances et le comportement du système hybride. Les résultats obtenus vérifient l'efficacité de cette stratégie. De plus la comparaison avec la stratégie de gestion de la puissance précédente, dans laquelle le coût d’énergie du générateur diesel n'est pas pris en compte, démontre que la nouvelle stratégie de gestion peut réduire le coût total du système de puissance à courant continu hybride.The intermittent and random nature of renewable sources, such as photovoltaic and wind turbine, asks for the complement of storage, such as battery and back-up energy, such as diesel generator, especially in a standalone power system. Concerning the diesel generator, it needs some time to start up and cannot immediately offer the needed power, due to its dynamic behavior. Hence, the power quality is lowered down during this period because of the shortage of power. Therefore, during the period of the diesel generator starting up, a supercapacitor is suggested to compensate the power balance because of its fast response and high power density. A power control strategy is proposed to achieve the coordination between diesel generator and supercapacitor. Both simulation and experimental results show that the proposed control strategy is able to regulate the DC bus voltage within the acceptable limits and supplying the load during the renewable power under generation or load step-increase situations. In addition, the supercapacitor can be also used to overcome the electrochemical storage limits like its state of charge and maximum current. So, this thesis proposes the real time power control for a hybrid photovoltaic-battery-supercapacitor-diesel generator DC microgrid system, aiming to meet the load power demand with reliability and stabilizing the DC bus voltage. Both simulation and experimental results show that the designed control strategy improves the DC microgrid dynamic and static performances under different operating conditions. Furthermore, in order to minimize the diesel generator energy cost, the fuel cost and fuel consumption are analysed through several experimental tests. Therefore, the optimal value of its power generation is deduced and applied in a newly proposed energy management strategy. This strategy can achieve the goal of maximizing the utilization of photovoltaic energy and taking into account the slow start-up characteristic and energy cost of diesel generator. Both simulation and experimental studies are carried out by using the real photovoltaic data to illustrate the performance and the behavior of the hybrid system. The obtained results verify the effectiveness of this strategy. Furthermore, the comparison with the previous energy management strategy, in which the diesel generator energy cost is not considered, demonstrates that the newly proposed energy management strategy can reduce the total cost of the hybrid DC power system

    Power Management Strategy for an Autonomous DC Microgrid

    No full text
    Owing to the intermittent nature of renewable energy, microgrids in islanding operation mode require backup power sources. The diesel generator is the most popular backup source, but does not offer an instantaneous start-up and cannot immediately provide the necessary power. Therefore, supercapacitors are used to assist the power balance during diesel generator start-up thanks to their responsiveness and high-power density. This paper proposed a power management strategy for an autonomous DC microgrid based on a photovoltaic source, electrochemical storage, a supercapacitor, and a diesel generator. The proposed control system aimed at power balance while accounting for the slow start-up characteristic of the diesel generator, the self-discharge of the supercapacitor, the dynamic load management, and the economic operating mode of the diesel generator. The main contribution of this paper centered on a power management strategy solving the above issues integrally, and economic analysis for the diesel generator and microgrid. Experimental studies were carried out for different scenarios and the results obtained confirmed the effectiveness of the proposed strategy. Furthermore, the study provided a comparison between the economic operating and load-following modes of the diesel generator and demonstrated that the economic operating mode of the diesel generator can reduce the total energy cost of the DC microgrid

    Effects of Biodegradation on the Structure and Properties of Windmill Palm (Trachycarpus fortunei) Fibers Using Different Chemical Treatments

    No full text
    In this work, windmill palm fiber (WPF), alkali-treated fiber (AF) without hemicellulose and bleached fiber (BF) without lignin were prepared and buried in soil for 30, 60 and 90 days. The surface morphology, chemical composition, crystallinity degree, mechanical properties, and residual mass rate of the samples, before and after biodegradation, were investigated. According to the results, soil burial degradation can remove the parenchyma cells and silica-bodies of WPF and deplete droplets containing the lignin of alkali-treated fiber after it has been buried for 30 days (AF30), and degradation of the single fiber cell wall of bleached fiber after it has been buried for 30 days (BF30). Buried in natural soil, lignin has a slower degradation rate than that of hemicellulose. WPF showed no significant differences in tensile strength after burial in soil for 90 days, because of the integrity fiber structure decreased the biodegradation. The most serious decrease, about 43%, in tensile strength occurred in AF after it had been buried for 90 days (BF90). This basic knowledge may be helpful for windmill palm fiber applications, especially for biodegradable composites

    Strength prediction model of fractured dolomite and analysis of mechanical properties based on PFC3D

    No full text
    Abstract To investigate the mechanical properties of fractured dolomite, this study analyzed the fracture characteristics (dip angle, length, position, quantity) using the Pearson coefficient and MIC coefficient. Subsequently, the data pertaining to fracture characteristics is preprocessed using a third-degree polynomial, and a three-classification strategy is implemented to improve the logistic regression algorithm to establish the strength prediction model of fractured dolomite. Furthermore, the significance order of the impact of fracture characteristics on rock strength was determined using the numerical simulation software PFC3D, and the dip angle effect was explained from the perspective of internal fracture propagation within the rock. The results show that: (1) When the regularization coefficient λ = 10,000, the algorithm has the highest prediction accuracy and the strongest model generalization ability. (2) The numerical simulation analysis software PFC3D can accurately invert rock failure process and characteristics, and the order of influence of fracture characteristics on rock strength is dip angle > length > position

    Continuously-tuned tunneling behaviors of ferroelectric tunnel junctions based on BaTiO3/La0.67Sr0.33MnO3 heterostructure

    No full text
    In this work, we fabricate BaTiO3/La0.67Sr0.33MnO3 (BTO/LSMO) ferroelectric tunnel junction on (001) SrTiO3 substrate by pulsed laser deposition method. Combining piezoresponse force and conductive-tip atomic force microscopy, we demonstrate robust and reproducible polarization-controlled tunneling behaviors with the resulting tunneling electroresistance value reaching about 102 in ultrathin BTO films (∼1.2 nm) at room temperature. Moreover, local poling areas with different conductivity are finally achieved by controlling the relative proportion of upward and downward domains, and different poling areas exhibit stable transport properties

    MUC1 promotes lung metastases of liver cancer by impairing anti-tumor immunity

    No full text
    Abstract Purpose MUC1 is a membrane bound protein that can regulate tumor progression but its role in tumor metastasis and the metastatic microenvironment remains unclear. Methods We performed differential gene analysis for primary liver cancer (n = 31) and lung metastases (n = 31) using the Gene Expression Omnibus (GEO) dataset (GSE141016) and obtained RNA sequencing data from 374 liver cancer and 50 normal tissues from The Cancer Genome Atlas (TCGA). We analyzed the prognostic value of MUC1 and the relationship between MUC1 and the TME using online databases and a clinical cohort. Immunohistochemistry detected MUC1 in normal liver, liver cancer, and lung metastases. Multiplex immunohistochemistry staining detected immune cells in the metastatic microenvironment. Results High MUC1 expression levels in hepatocellular carcinoma are associated with worse clinical prognosis and higher rates of lung metastasis. In addition, we observed a correlation between MUC1 and multiple immune cells in the metastatic microenvironment. In paired primary liver cancer and lung metastatic tumor tissues from the same patient, we observed higher MUC1 protein levels in lung metastases than in primary liver cancer. Furthermore, MUC1 was negatively correlated with CD8+T and Treg cells in the metastatic tumor microenvironment and positively correlated with DC. In addition, we found that MUC1 was associated with CD8+T cell activation and function using flow cytometry in another cohort of patients with liver cancer. Conclusion These data confirm the potential of MUC1 as a prognostic marker and therapeutic target

    Standard addition quantitative real-time PCR (SAQPCR): a novel approach for determination of transgene copy number avoiding PCR efficiency estimation.

    Get PDF
    Quantitative real-time polymerase chain reaction (qPCR) has been previously applied to estimate transgene copy number in transgenic plants. However, the results can be erroneous owing to inaccurate estimation of PCR efficiency. Here, a novel qPCR approach, named standard addition qPCR (SAQPCR), was devised to accurately determine transgene copy number without the necessity of obtaining PCR efficiency data. The procedures and the mathematical basis for the approach are described. A recombinant plasmid harboring both the internal reference gene and the integrated target gene was constructed to serve as the standard DNA. It was found that addition of suitable amounts of standard DNA to test samples did not affect PCR efficiency, and the guidance for selection of suitable cycle numbers for analysis was established. Samples from six individual T(0) tomato (Solanum lycopersicum) plants were analyzed by SAQPCR, and the results confirmed by Southern blot analysis. The approach produced accurate results and required only small amounts of plant tissue. It can be generally applied to analysis of different plants and transgenes. In addition, it can also be applied to zygosity analysis
    corecore