3,987 research outputs found
Addressing the Future Burden of Cancer and Its Impact on the Oncology Workforce: Where Is Cancer Prevention and Control?
The need for cancer professionals has never been more urgent than it is today. Reports project serious shortages by 2020 of oncology health care providers. Although many plans have been proposed, no role for prevention has been described. In response, a 2-day symposium was held in 2009 at The University of Texas MD Anderson Cancer Center to capture the current status of the cancer prevention workforce and begin to identify gaps in the workforce. Five working groups were organized around the following topic areas: (a) health policy and advocacy; (b) translation to the community; (c) integrating cancer prevention into clinical practice; (d) health services infrastructure and economics; and (e) discovery, research, and technology. Along with specific recommendations on these topics, the working groups identified two additional major themes: the difficulty of defining areas within the field (including barriers to communication) and lack of sufficient funding. These interdependent issues synergistically impede progress in preventing cancer; they are explored in detail in this synthesis, and recommendations for actions to address them are presented. Progress in cancer prevention should be a major national and international goal. To achieve this goal, ensuring the health of the workforce in cancer prevention and control is imperative
Portfolio selection problems in practice: a comparison between linear and quadratic optimization models
Several portfolio selection models take into account practical limitations on
the number of assets to include and on their weights in the portfolio. We
present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset
Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional
Value-at-Risk (LACVaR) models, where the assets are limited with the
introduction of quantity and cardinality constraints. We propose a completely
new approach for solving the LAM model, based on reformulation as a Standard
Quadratic Program and on some recent theoretical results. With this approach we
obtain optimal solutions both for some well-known financial data sets used by
several other authors, and for some unsolved large size portfolio problems. We
also test our method on five new data sets involving real-world capital market
indices from major stock markets. Our computational experience shows that,
rather unexpectedly, it is easier to solve the quadratic LAM model with our
algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of
the best commercial codes for mixed integer linear programming (MILP) problems.
Finally, on the new data sets we have also compared, using out-of-sample
analysis, the performance of the portfolios obtained by the Limited Asset
models with the performance provided by the unconstrained models and with that
of the official capital market indices
Comparison of alternative risk adjustment measures for predictive modeling: high risk patient case finding using Taiwan's National Health Insurance claims
<p>Abstract</p> <p>Background</p> <p>Predictive modeling presents an opportunity to contain the expansion of medical expenditures by focusing on very few people. Evaluation of how risk adjustment models perform in predictive modeling in Taiwan or Asia has been rare. The aims of this study were to evaluate the performance of different risk adjustment models (the ACG risk adjustment system and prior expenditures) in predictive modeling, using Taiwan's National Health Insurance (NHI) claims data, and to compare characteristics of potentially high-expenditure subjects identified through different models.</p> <p>Methods</p> <p>A random sample of NHI enrollees continuously enrolled in 2002 and 2003 (n = 164,562) was selected. Health status measures and total expenditures derived from 2002 NHI claims data were used to predict the possibility of becoming 2003 top users. Statistics-based indicators (C-statistics, sensitivity, & Predictive Positive Value) and characteristics of identified top groups by different models (expenditures and prevalence of manageable diseases) were presented.</p> <p>Results</p> <p>Both diagnosis-based and prior expenditures models performed much better than the demographic model. Diagnosis-based models were better in identifying top users with manageable diseases; prior expenditures models were better in statistics-based indicators and identifying people with higher average expenditures. Prior expenditures status could correctly identify more actual top users than diagnosis-based or demographic models. The proportions of actual top users that could be identified by diagnosis-based models alone were much lower than that identified by prior expenditures status.</p> <p>Conclusions</p> <p>Predicted top users identified by different models have different characteristics and there is little agreement between modes regarding which groups would be potentially top users; therefore, which model to use should depend on the purpose of predictive modeling. Prior expenditures are a more powerful tool than diagnosis-based risk adjusters in terms of correctly identifying more actual high expenditures users. There is still much room left for improvement of diagnosis-based models in predictive modeling.</p
Phage therapy efficacy: a review of the last 10 years of preclinical studies
Due to the rise of multidrug-resistant infections in humans, phage therapy is gaining renewed attention in Western medicine. Despite the increasing number of publications focussed on the isolation, characterization and in vitro performance of different phages, there is still a lack of concise pre-clinical information to guide the application of phage therapy in clinical practice. Nevertheless, over the last decade, efforts have been made to conduct more detailed studies of the in vivo efficacy of phages. Here, we review the most relevant in vivo studies performed in the last decade covering phage efficacy in both preclinical and clinical trials. We compare different routes of administration, dosage effect and different animal models of distinct types of infections. Moreover, insights into case studies and results from clinical trials are presented. Challenges and limitations of phage use as evidenced by the current state of research are also discussed in order to improve both the trustworthiness and success of the implementation of phage therapy.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 [POCI-01-0145-FEDER-006684] and Projects PTDC/SAU-PUB/29182/2017 [POCI-01-0145-FEDER-029182] and PTDC/CVTCVT/29628/2017 [POCI-01-0145-FEDER-029628]. This work was also supported by BioTecNorte operation [NORTE-01-
0145-FEDER-000004] funded by the European Regional Development Fund under the scope of Norte2020 -
Programa Operacional Regional do Norte. DPP was supported by a FCT grant [SFRH/BPD/116187/2016]. KD is the recipient of the National Science Centre in Poland grant [UMO-2018/29/B/NZ6/01659]. The funding bodies had no role in study design, data collection and analysis, preparation of the manuscript, or the decision to publish.info:eu-repo/semantics/publishedVersio
Transcriptomics reveal an integrative role for maternal thyroid hormones during zebrafish embryogenesis
Thyroid hormones (THs) are essential for embryonic brain development but the genetic mechanisms involved in the action of maternal THs (MTHs) are still largely unknown. As the basis for understanding the underlying genetic mechanisms of MTHs regulation we used an established zebrafish monocarboxylic acid transporter 8 (MCT8) knock-down model and characterised the transcriptome in 25hpf zebrafish embryos. Subsequent mapping of differentially expressed genes using Reactome pathway analysis together with in situ expression analysis and immunohistochemistry revealed the genetic networks and cells under MTHs regulation during zebrafish embryogenesis. We found 4,343 differentially expressed genes and the Reactome pathway analysis revealed that TH is involved in 1681 of these pathways. MTHs regulated the expression of core developmental pathways, such as NOTCH and WNT in a cell specific context. The cellular distribution of neural MTH-target genes demonstrated their cell specific action on neural stem cells and differentiated neuron classes. Taken together our data show that MTHs have a role in zebrafish neurogenesis and suggest they may be involved in cross talk between key pathways in neural development. Given that the observed MCT8 zebrafish knockdown phenotype resembles the symptoms in human patients with Allan-Herndon-Dudley syndrome our data open a window into understanding the genetics of this human congenital condition.Portuguese Fundacao para Ciencia e Tecnologia (FCT) [PTDC/EXPL/MARBIO/0430/2013]; CCMAR FCT Plurianual financing [UID/Multi/04326/2013]; FCT [SFRH/BD/111226/2015, SFRH/BD/108842/2015, SFRH/BPD/89889/2012]; FCT-IF Starting Grant [IF/01274/2014]info:eu-repo/semantics/publishedVersio
Current quark mass dependence of nucleon magnetic moments and radii
A calculation of the current-quark-mass-dependence of nucleon static
electromagnetic properties is necessary in order to use observational data as a
means to place constraints on the variation of Nature's fundamental parameters.
A Poincare' covariant Faddeev equation, which describes baryons as composites
of confined-quarks and -nonpointlike-diquarks, is used to calculate this
dependence The results indicate that, like observables dependent on the
nucleons' magnetic moments, quantities sensitive to their magnetic and charge
radii, such as the energy levels and transition frequencies in Hydrogen and
Deuterium, might also provide a tool with which to place limits on the allowed
variation in Nature's constants.Comment: 23 pages, 2 figures, 4 tables, 4 appendice
Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex
<p>Abstract</p> <p>Background</p> <p>To study the organization and interaction with the fusion domain (or fusion peptide, FP) of the transmembrane domain (TMD) of influenza virus envelope glycoprotein for its role in membrane fusion which is also essential in the cellular trafficking of biomolecules and sperm-egg fusion.</p> <p>Results</p> <p>The fluorescence and gel electrophoresis experiments revealed a tight self-assembly of TMD in the model membrane. A weak but non-random interaction between TMD and FP in the membrane was found. In the complex, the central TMD oligomer was packed by FP in an antiparallel fashion. FP insertion into the membrane was altered by binding to TMD. An infrared study exhibited an enhanced membrane perturbation by the complex formation. A model was built to illustrate the role of TMD in the late stages of influenza virus-mediated membrane fusion reaction.</p> <p>Conclusion</p> <p>The TMD oligomer anchors the fusion protein in the membrane with minimal destabilization to the membrane. Upon associating with FP, the complex exerts a synergistic effect on the membrane perturbation. This effect is likely to contribute to the complete membrane fusion during the late phase of fusion protein-induced fusion cascade. The results presented in the work characterize the nature of the interaction of TMD with the membrane and TMD in a complex with FP in the steps leading to pore initiation and dilation during virus-induced fusion. Our data and proposed fusion model highlight the key role of TMD-FP interaction and have implications on the fusion reaction mediated by other type I viral fusion proteins. Understanding the molecular mechanism of membrane fusion may assist in the design of anti-viral drugs.</p
Volatility forecasting in the Chinese commodity futures market with intraday data
Given the unique institutional regulations in the Chinese commodity futures market as well as the characteristics of the data it generates, we utilize contracts with three months to delivery, the most liquid contract series, to systematically explore volatility forecasting for aluminum, copper, fuel oil, and sugar at the daily and three intraday sampling frequencies. We adopt popular volatility models in the literature and assess the forecasts obtained via these models against alternative proxies for the true volatility. Our results suggest that the long memory property is an essential feature in the commodity futures volatility dynamics and that the ARFIMA model consistently produces the best forecasts or forecasts not inferior to the best in statistical terms
Membrane interaction and structure of the transmembrane domain of influenza hemagglutinin and its fusion peptide complex
<p>Abstract</p> <p>Background</p> <p>To study the organization and interaction with the fusion domain (or fusion peptide, FP) of the transmembrane domain (TMD) of influenza virus envelope glycoprotein for its role in membrane fusion which is also essential in the cellular trafficking of biomolecules and sperm-egg fusion.</p> <p>Results</p> <p>The fluorescence and gel electrophoresis experiments revealed a tight self-assembly of TMD in the model membrane. A weak but non-random interaction between TMD and FP in the membrane was found. In the complex, the central TMD oligomer was packed by FP in an antiparallel fashion. FP insertion into the membrane was altered by binding to TMD. An infrared study exhibited an enhanced membrane perturbation by the complex formation. A model was built to illustrate the role of TMD in the late stages of influenza virus-mediated membrane fusion reaction.</p> <p>Conclusion</p> <p>The TMD oligomer anchors the fusion protein in the membrane with minimal destabilization to the membrane. Upon associating with FP, the complex exerts a synergistic effect on the membrane perturbation. This effect is likely to contribute to the complete membrane fusion during the late phase of fusion protein-induced fusion cascade. The results presented in the work characterize the nature of the interaction of TMD with the membrane and TMD in a complex with FP in the steps leading to pore initiation and dilation during virus-induced fusion. Our data and proposed fusion model highlight the key role of TMD-FP interaction and have implications on the fusion reaction mediated by other type I viral fusion proteins. Understanding the molecular mechanism of membrane fusion may assist in the design of anti-viral drugs.</p
- …