70,576 research outputs found

    Quantum oscillations observed in graphene at microwave frequencies

    Full text link
    We have measured the microwave conductance of mechanically exfoliated graphene at frequencies up to 8.5 GHz. The conductance at 4.2 K exhibits quantum oscillations, and is independent of the frequency

    Characterization of a multimode coplanar waveguide parametric amplifier

    Full text link
    We characterize a novel Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ~1GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases, and we show that the added noise can be less than 0.5 added photons in the case of low gain

    On-demand microwave generator of shaped single photons

    Get PDF
    We demonstrate the full functionality of a circuit that generates single microwave photons on demand, with a wave packet that can be modulated with a near-arbitrary shape. We achieve such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A dc superconducting quantum interference device shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This control allows us to couple and decouple the qubit from the line, shaping its emission rate on fast time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid-state systems and can be generalized to multiple qubits as well as to resonators.Comment: 10 pages, 7 figures. Published versio

    Analysis of data from NASA B-57B gust gradient program

    Get PDF
    Statistical analysis of the turbulence measured in flight 6 of the NASA B-57B over Denver, Colorado, from July 7 to July 23, 1982 included the calculations of average turbulence parameters, integral length scales, probability density functions, single point autocorrelation coefficients, two point autocorrelation coefficients, normalized autospectra, normalized two point autospectra, and two point cross sectra for gust velocities. The single point autocorrelation coefficients were compared with the theoretical model developed by von Karman. Theoretical analyses were developed which address the effects spanwise gust distributions, using two point spatial turbulence correlations

    Simulation of valveless micropump and mode analysis

    Get PDF
    In this work, a 3-D simulation is performed to study for the solid-fluid coupling effect driven by piezoelectric materials and utilizes asymmetric obstacles to control the flow direction. The result of simulation is also verified. For a micropump, it is crucial to find the optimal working frequency which produce maximum net flow rate. The PZT plate vibrates under the first mode, which is symmetric. Adjusting the working frequency, the maximum flow rate can be obtained. For the micrpump we studied, the optimal working frequency is 3.2K Hz. At higher working frequency, say 20K Hz, the fluid-solid membrane may come out a intermediate mode, which is different from the first mode and the second mode. It is observed that the center of the mode drifts. Meanwhile, the result shows that a phase shift lagging when the excitation force exists in the vibration response. Finally, at even higher working frequency, say 30K Hz, a second vibration mode is observed.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Damping of antiferromagnetic spin waves by valence fluctuations in the double layer perovskite YBaFe2O5

    Full text link
    Inelastic neutron scattering experiments show that spin dynamics in the charge ordered insulating ground state of the double-layer perovskite YBaFe2O5 is well described in terms of eg superexchange interactions. Above the Verwey transition at TV = 308 K, t2g double exchange-type conduction within antiferromagnetic FeO2--BaO--FeO2 double layers proceeds by an electron hopping process that requires a spin flip of the five-fold coordinated Fe ions, costing an energy 5S^2 of approximately 0.1 eV. The hopping process disrupts near-neighbor spin correlations, leading to massive damping of zone-boundary spin waves.Comment: RevTeX, 4 pages, 4 figures, submitted to Phys. Rev. Let

    Partition Function Zeros of a Restricted Potts Model on Lattice Strips and Effects of Boundary Conditions

    Full text link
    We calculate the partition function Z(G,Q,v)Z(G,Q,v) of the QQ-state Potts model exactly for strips of the square and triangular lattices of various widths LyL_y and arbitrarily great lengths LxL_x, with a variety of boundary conditions, and with QQ and vv restricted to satisfy conditions corresponding to the ferromagnetic phase transition on the associated two-dimensional lattices. From these calculations, in the limit LxL_x \to \infty, we determine the continuous accumulation loci B{\cal B} of the partition function zeros in the vv and QQ planes. Strips of the honeycomb lattice are also considered. We discuss some general features of these loci.Comment: 12 pages, 12 figure

    Non-Markovian master equation for a damped oscillator with time-varying parameters

    Full text link
    We derive an exact non-Markovian master equation that generalizes the previous work [Hu, Paz and Zhang, Phys. Rev. D {\bf 45}, 2843 (1992)] to damped harmonic oscillators with time-varying parameters. This is achieved by exploiting the linearity of the system and operator solution in Heisenberg picture. Our equation governs the non-Markovian quantum dynamics when the system is modulated by external devices. As an application, we apply our equation to parity kick decoupling problems. The time-dependent dissipative coefficients in the master equation are shown to be modified drastically when the system is driven by π\pi pulses. For coherence protection to be effective, our numerical results indicate that kicking period should be shorter than memory time of the bath. The effects of using soft pulses in an ohmic bath are also discussed
    corecore