3,222 research outputs found

    Measuring Stereo Camera Alignment Using Depth Map Smoothness

    Get PDF
    This publication describes systems and techniques directed to measuring stereo camera alignment using depth map smoothness as a quality metric for the stereo calibration process. The quality of the depth map generated by the stereo cameras, as measured by smoothness, provides feedback indicative of a need (or not) for stereo calibration to account for camera misalignment. A smooth depth map indicates the stereo camera is aligned. Measuring depth map smoothness closes the feedback loop for gauging how well the stereo calibration process is working

    The influence of tropospheric biennial oscillation on mid-tropospheric CO_2

    Get PDF
    Mid-tropospheric CO_2 retrieved from the Atmospheric Infrared Sounder (AIRS) was used to investigate CO_2 interannual variability over the Indo-Pacific region. A signal with periodicity around two years was found for the AIRS mid-tropospheric CO_2 for the first time, which is related to the Tropospheric Biennial Oscillation (TBO) associated with the strength of the monsoon. During a strong (weak) monsoon year, the Western Walker Circulation is strong (weak), resulting in enhanced (diminished) CO_2 transport from the surface to the mid-troposphere. As a result, there are positive (negative) CO2 anomalies at mid-troposphere over the Indo-Pacific region. We simulated the influence of the TBO on the mid-tropospheric CO_2 over the Indo-Pacific region using the MOZART-2 model, and results were consistent with observations, although we found the TBO signal in the model CO_2 is to be smaller than that in the AIRS observations

    Microfabricated gas chromatograph for Sub-ppb determinations of TCE in vapor intrusion investigations

    Get PDF
    AbstractA microfabricated gas chromatograph (μGC) is described and its application to the analysis of sub-parts-per-billion (ppb) concentrations of trichloroethylene (TCE) in mixtures, relevant to the problem of TCE vapor intrusion (VI) into homes and offices, is demonstrated. The system employs a MEMS focuser, dual MEMS separation columns, and MEMS interconnects along with a microsensor array. These are interfaced to a (non-MEMS) front-end pre-trap and high-volume sampler module to reduce analysis time. The response patterns generated from the sensor array for each vapor are combined with the chromatographic retention time to identify and differentiate the components of VOC mixtures. All functions are controlled by a LabView routine written in house. A chemometric method based on multivariate curve resolution has also been developed for analyzing partially resolved mixture components. First results are presented of the capture, separation, recognition, and quantification of TCE in a mixture. TCE is measured at 0.185 ppb, with a projected detection limit of 0.030 ppb (20-L sample)

    Policy Process Editor for P3BM Software

    Get PDF
    A computer program enables generation, in the form of graphical representations of process flows with embedded natural-language policy statements, input to a suite of policy-, process-, and performance-based management (P3BM) software. This program (1) serves as an interface between users and the Hunter software, which translates the input into machine-readable form; and (2) enables users to initialize and monitor the policy-implementation process. This program provides an intuitive graphical interface for incorporating natural-language policy statements into business-process flow diagrams. Thus, the program enables users who dictate policies to intuitively embed their intended process flows as they state the policies, reducing the likelihood of errors and reducing the time between declaration and execution of policy

    A synthetic human Agouti-related protein-(83–132)-NH2 fragment is a potent inhibitor of melanocortin receptor function

    Get PDF
    AbstractChemical synthesis of Agouti proteins – Agouti and Agouti-related proteins – is complicated by their large size and by multiple cysteine residues located in the carboxyl terminal regions. Three human Agouti-related protein (AGRP) fragments, two of which correspond to a proposed endoprotease cleavage site between amino acids 82 and 83, were synthesized and tested for anti-melanotropic activity using Xenopus laevis dermal melanophores. Amino-terminal fragments AGRP(25–51) and (54–82) were devoid of significant antagonist activity, whereas the amidated carboxyl-terminal AGRP fragment (83–132)-NH2 was potently active with an inhibitory equilibrium dissociation constant (Ki) of 0.7 nM. The ability to synthesize functionally active AGRP should help unravel its role in the central nervous system and its unusual properties with respect to interaction with the melanocortin family of G-protein coupled receptors

    Evidence of state-dependence in the effectiveness of responsive neurostimulation for seizure modulation

    Full text link
    An implanted device for brain-responsive neurostimulation (RNS System) is approved as an effective treatment to reduce seizures in adults with medically-refractory focal epilepsy. Clinical trials of the RNS System demonstrate population-level reduction in average seizure frequency, but therapeutic response is highly variable. Recent evidence links seizures to cyclical fluctuations in underlying risk. We tested the hypothesis that effectiveness of responsive neurostimulation varies based on current state within cyclical risk fluctuations. We analyzed retrospective data from 25 adults with medically-refractory focal epilepsy implanted with the RNS System. Chronic electrocorticography was used to record electrographic seizures, and hidden Markov models decoded seizures into fluctuations in underlying risk. State-dependent associations of RNS System stimulation parameters with changes in risk were estimated. Higher charge density was associated with improved outcomes, both for remaining in a low seizure risk state and for transitioning from a high to a low seizure risk state. The effect of stimulation frequency depended on initial seizure risk state: when starting in a low risk state, higher stimulation frequencies were associated with remaining in a low risk state, but when starting in a high risk state, lower stimulation frequencies were associated with transition to a low risk state. Findings were consistent across bipolar and monopolar stimulation configurations. The impact of RNS on seizure frequency exhibits state-dependence, such that stimulation parameters which are effective in one seizure risk state may not be effective in another. These findings represent conceptual advances in understanding the therapeutic mechanism of RNS, and directly inform current practices of RNS tuning and the development of next-generation neurostimulation systems

    Simulation of upper tropospheric CO₂ from chemistry and transport models

    Get PDF
    The California Institute of Technology/Jet Propulsion Laboratory two-dimensional (2-D), three-dimensional (3-D) GEOS-Chem, and 3-D MOZART-2 chemistry and transport models (CTMs), driven respectively by NCEP2, GEOS-4, and NCEP1 reanalysis data, have been used to simulate upper tropospheric CO2 from 2000 to 2004. Model results of CO2 mixing ratios agree well with monthly mean aircraft observations at altitudes between 8 and 13 km (Matsueda et al., 2002) in the tropics. The upper tropospheric CO2 seasonal cycle phases are well captured by the CTMs. Model results have smaller seasonal cycle amplitudes in the Southern Hemisphere compared with those in the Northern Hemisphere, which are consistent with the aircraft data. Some discrepancies are evident between the model and aircraft data in the midlatitudes, where models tend to underestimate the amplitude of CO2 seasonal cycle. Comparison of the simulated vertical profiles of CO2 between the different models reveals that the convection in the 3-D models is likely too weak in boreal winter and spring. Model sensitivity studies suggest that convection mass flux is important for the correct simulation of upper tropospheric CO2

    Router Agent Technology for Policy-Based Network Management

    Get PDF
    This innovation can be run as a standalone network application on any computer in a networked environment. This design can be configured to control one or more routers (one instance per router), and can also be configured to listen to a policy server over the network to receive new policies based on the policy- based network management technology. The Router Agent Technology transforms the received policies into suitable Access Control List syntax for the routers it is configured to control. It commits the newly generated access control lists to the routers and provides feedback regarding any errors that were faced. The innovation also automatically generates a time-stamped log file regarding all updates to the router it is configured to control. This technology, once installed on a local network computer and started, is autonomous because it has the capability to keep listening to new policies from the policy server, transforming those policies to router-compliant access lists, and committing those access lists to a specified interface on the specified router on the network with any error feedback regarding commitment process. The stand-alone application is named RouterAgent and is currently realized as a fully functional (version 1) implementation for the Windows operating system and for CISCO routers
    corecore