809 research outputs found

    Research on the Foreign Direct Investment Factors of Japanese Hotel Industry in Taiwan-Taking Okura Hotel as an Example

    Get PDF
    Due to the impact of COVID-19 in 2019, the global hotel industry has been severely impacted by the disconnection of the tourism industry. However, even with the impact of the epidemic, the Japanese hotel industry’s investment in Taiwan has not stopped. What are the factors that drive the Japanese hotel industry to defy the threat of the epidemic and choose Taiwan as its destination for foreign direct investment? This is the research goal of this article. This article intends to adopt Push-Pull-Mooring (PPM)migration theory to construct the possible factors of why the Japanese hotel industry chooses Taiwan as its foreign direct investment destination. These factors consist of three effects to describe Japan Okura hotel’s migration. First, the push effect refers to factors that induce people to leave their place of origin. Second, the pull effect refers to factors that attract people to a destination. Third, the mooring effect refers to intervention variables for push and pull effects that facilitate or inhibit the determination of movement. The finding is that push and pull factors still play an active role in promoting Okura Hotel’s investment in Taiwan, even if the influence of some factors is slightly reduced due to the shift in international conditions. With the development of globalization and high technology, mooring factors are no longer the reason that hinders Japanese Okura’s investment in Taiwan. Combined with push and pull factors, PPM migration model can fully explain why the Japanese hotel industry chooses to conduct foreign direct investment in Taiwan, even if it is affected by COVID-19.It’s just that COVID-19 has not stopped so far, and the unstable situation on both sides of the strait may impact the original PPM model and affect the results of the analysis. It is worth further observation and research by subsequent researchers

    Reply

    Get PDF

    Integrin-mediated membrane blebbing is dependent on the NHE1 and NCX1 activities.

    Get PDF
    Integrin-mediated signal transduction and membrane blebbing have been well studied to modulate cell adhesion, spreading and migration^1-6^. However, the relationship between membrane blebbing and integrin signaling has not been explored. Here we show that integrin-ligand interaction induces membrane blebbing and membrane permeability change. We found that sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are located in the membrane blebbing sites and inhibition of NHE1 disrupts membrane blebbing and decreases membrane permeability change. However, inhibition of NCX1 enhances cell blebbing to cause cell swelling which is correlated with an intracellular sodium accumulation induced by NHE17. These data suggest that sodium influx induced by NHE1 is a driving force for membrane blebbing growth, while sodium efflux induced by NCX1 in a reverse mode causes membrane blebbing retraction. Together, these data reveal a novel function of NHE1 and NCX1 in membrane permeability change and blebbing and provide the link for integrin signaling and membrane blebbing

    Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population.

    Get PDF
    One-carbon metabolism (folate metabolism) is considered important in carcinogenesis because of its involvement in DNA synthesis and biological methylation reactions. We investigated the associations of single nucleotide polymorphisms (SNPs) in folate metabolic pathway and the risk of three GI cancers in a population-based case-control study in Taixing City, China, with 218 esophageal cancer cases, 206 stomach cancer cases, 204 liver cancer cases, and 415 healthy population controls. Study participants were interviewed with a standardized questionnaire, and blood samples were collected after the interviews. We genotyped SNPs of the MTHFR, MTR, MTRR, DNMT1, and ALDH2 genes, using PCR-RFLP, SNPlex, or TaqMan assays. To account for multiple comparisons and reduce the chances of false reports, we employed semi-Bayes (SB) shrinkage analysis. After shrinkage and adjusting for potential confounding factors, we found positive associations between MTHFR rs1801133 and stomach cancer (any T versus C/C, SB odds-ratio [SBOR]: 1.79, 95% posterior limits: 1.18, 2.71) and liver cancer (SBOR: 1.51, 95% posterior limits: 0.98, 2.32). There was an inverse association between DNMT1 rs2228612 and esophageal cancer (any G versus A/A, SBOR: 0.60, 95% posterior limits: 0.39, 0.94). In addition, we detected potential heterogeneity across alcohol drinking status for ORs relating MTRR rs1801394 to esophageal (posterior homogeneity P = 0.005) and stomach cancer (posterior homogeneity P = 0.004), and ORs relating MTR rs1805087 to liver cancer (posterior homogeneity P = 0.021). Among non-alcohol drinkers, the variant allele (allele G) of these two SNPs was inversely associated with the risk of these cancers; while a positive association was observed among ever-alcohol drinkers. Our results suggest that genetic polymorphisms related to one-carbon metabolism may be associated with cancers of the esophagus, stomach, and liver. Heterogeneity across alcohol consumption status of the associations between MTR/MTRR polymorphisms and these cancers indicates potential interactions between alcohol drinking and one-carbon metabolic pathway

    Solving Robotic Trajectory Sequential Writing Problem via Learning Character’s Structural and Sequential Information

    Get PDF
    The writing sequence of numerals or letters often affects aesthetic aspects of the writing outcomes. As such, it remains a challenge for robotic calligraphy systems to perform, mimicking human writers’ implicit intention. This article presents a new robot calligraphy system that is able to learn writing sequences with limited sequential information, producing writing results compatible to human writers with good diversity. In particular, the system innovatively applies a gated recurrent unit (GRU) network to generate robotic writing actions with the support of a prelabeled trajectory sequence vector. Also, a new evaluation method is proposed that considers the shape, trajectory sequence, and structural information of the writing outcome, thereby helping ensure the writing quality. A swarm optimization algorithm is exploited to create an optimal set of parameters of the proposed system. The proposed approach is evaluated using Arabic numerals, and the experimental results demonstrate the competitive writing performance of the system against state-of-the-art approaches regarding multiple criteria (including FID, MAE, PSNR, SSIM, and PerLoss), as well as diversity performance concerning variance and entropy. Importantly, the proposed GRU-based robotic motion planning system, supported with swarm optimization can learn from a small dataset, while producing calligraphy writing with diverse and aesthetically pleasing outcomes
    • …
    corecore