
Aberystwyth University

Solving Robotic Trajectory Sequential Writing Problem via Learning Character’s
Structural and Sequential Information
Li, Quanfeng; Guo, Zhihua; Chao, Fei; Chang, Xiang; Yang, Longzhi ; Lin, Chih-Min; Shang, Changjing; Shen,
Qiang

Published in:
IEEE Transactions on Cybernetics

Publication date:
2022

Citation for published version (APA):
Li, Q., Guo, Z., Chao, F., Chang, X., Yang, L., Lin, C-M., Shang, C., & Shen, Q. (Accepted/In press). Solving
Robotic Trajectory Sequential Writing Problem via Learning Character’s Structural and Sequential Information.
IEEE Transactions on Cybernetics.

Document License
CC BY

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 12. Oct. 2022

https://pure.aber.ac.uk/portal/en/persons/fei-chao(a89a7d8c-80f6-49d6-8d48-9490ea79c9c5).html
https://pure.aber.ac.uk/portal/en/persons/xiang-chang(151cf8d1-ff92-4a9b-84f9-493bcad895b1).html
https://pure.aber.ac.uk/portal/en/persons/changjing-shang(b892bfaa-ae7f-45c2-9082-7bfbf2b70a5e).html
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/solving-robotic-trajectory-sequential-writing-problem-via-learning-characters-structural-and-sequential-information(61728aa2-b4db-4fa4-aa43-659e43aee835).html
https://pure.aber.ac.uk/portal/en/publications/solving-robotic-trajectory-sequential-writing-problem-via-learning-characters-structural-and-sequential-information(61728aa2-b4db-4fa4-aa43-659e43aee835).html


1

Solving Robotic Trajectory Sequential Writing
Problem via Learning Character’s Structural and

Sequential Information
Quan-Feng Li, Zhi-Hua Guo, Fei Chao Member, IEEE, Xiang Chang, Longzhi Yang Senior Member, IEEE,,

Chih-Min Lin, Fellow, IEEE, Changjing Shang, and Qiang Shen

Abstract—The writing sequence of numerals or letters often
affects aesthetic aspects of the writing outcomes. As such, it
remains a challenge for robotic calligraphy systems to perform,
mimicking human writers’ implicit intention. This paper presents
a new robot calligraphy system that is able to learn writing
sequences with limited sequential information, producing writing
results compatible to human writers with good diversity. In
particular, the system innovatively applies a Gated Recurrent
Unit (GRU) network to generate robotic writing actions with
the support of a pre-labeled trajectory sequence vector. Also,
a new evaluation method is proposed that considers the shape,
trajectory sequence, and structural information of the writing
outcome, thereby helping ensure the writing quality. A swarm
optimization algorithm is exploited to create an optimal set of
parameters of the proposed system.The proposed approach is
evaluated using Arabic numerals, and the experimental results
demonstrate the competitive writing performance of the system
against state-of-the-art approaches regarding multiple criteria
(including FID, MAE, PSNR, SSIM, and PerLoss), as well as
diversity performance concerning variance and entropy. Impor-
tantly, the proposed GRU-based robotic motion planning system,
supported with swarm optimization can learn from a small
dataset, while producing calligraphy writing with diverse and
aesthetically pleasing outcomes.

Index Terms—Robotic calligraphy, robotic motion planning,
Gated Recurrent Unit network.

I. INTRODUCTION

Robotic advances are making an increasingly significant
impact on human culture preservation and culture education
promotion through robotic writing, dance and painting etc. [1].
Such advances continuously contribute to better addressing the
challenges of robotic calligraphy writing, given the underpin-
ning of complicated control algorithms to drive robotic end-
effectors to write numerals, letters, or complex Chinese charac-
ters [2]–[6]. Robotic writing still faces several key challenges
despite the promising results achieved so far. Many learning-
based approaches to robotic calligraphy have attempted to

Q.-F. Li, Z.-H. Guo, and F. Chao are with the Department of Artifi-
cial Intelligence, School of Informatics, Xiamen University, China e-mail:
(fchao@xmu.edu.cn). F. Chao, X. Chang, C. Shang, and Q. Shen are with
the Institute of Mathematics, Physics, and Computer Science, Aberystwyth
University, UK. L. Yang is with the Department of Computer and Information
Sciences, Northumbria University, UK. C.-M. Lin is with the Department of
Electrical Engineering, Yuan Ze University, Taiwan. Corresponding Author:
Fei Chao

This work was supported by the Natural Science Foundation of Fujian
Province of China (No. 2021J01002).

build automatic learning calligraphy robots, but the writing
sequences generated by such approaches are usually not in
accordance with human writing habits. One idea is to manually
pre-define a robot’s joint angles for each writing action to
write characters [7], but such methods usually require heavy
manual inputs from human engineers. Another good attempt
is to use the imitation learning method [8]–[11], which is
independent to the control or programming model of the robot.
However, this method is still labor-intensive albeit a noticeable
improvement, in addition to a side effect of poor generalization
ability.

Deep learning approaches, such as generative adversarial
nets (GAN) and long and short term memory (LSTM), have
also been innovatively applied to robotic calligraphy to address
the key challenge of writing sequence generation with the
support of large training data sets. For example, several stud-
ies [12]–[16] employed GAN-based methods to produce stroke
trajectories, one of which was improved by using heuristic
search algorithms leading to better performance [17]. Although
these methods can realize the writing of Chinese strokes, the
writing sequence of strokes is often not in accordance with
the rules predefined by humans. This was further enhanced by
the integration of LSTM networks [18]–[21]. In Rahmatizade’s
work, GAN was used to transform an input image into the low
dimensional space, and LSTM was then applied to predict
the joint parameter values of the robot [9]. This approach
effectively addresses the writing sequence challenge, but its
success is based on the availability of a large training dataset
with a wealth of action sequence information.In addition, re-
lated studies such as trajectory planning for hypersonic reentry
vehicles [22], [23], unmanned vehicles [24], and spacecrafts
[25] share the similar research challenge with our robotic
writing trajectory planning.

Another key challenge in robotic calligraphy is the aesthetic
evaluation of robotic writing results with particular considera-
tions of diversity. Most of the existing robotic writing systems
do not have a realistic aesthetic evaluation mechanism to
critically assess the writing performance [3]. Instead, several
studies adopted the Fréchet inception distances (FID) or the
restoring accuracy of an Autoencoder network to represent
the aesthetic performance [4], [26], [27]. These methods
well examined the writing results based on distribution, but
often ignored the structural information of letters or numerals
representing diversity. This leads to a research gap of effective
aesthetic evaluation functions based on structural features for



2

 

Fig. 1. Structure of GRU

better diversity.
This paper reports a new automatic writing action generator

for robotic calligraphy using a Gated Recurrent Unit network
(GRU) [28], [29], to address the aforementioned challenges
of writing sequence and result diversity. The GRU network
is comprised of a sequence of GRU units, each generating a
trajectory point. The generated trajectory point is utilized by
a calligraphy robot to write a part of a numeral. The image of
the writing result is then fed into the next GRU unit to create
the next trajectory point. When the numeral is completed, the
shape similarity, writing sequence, and structural information
are evaluated, which are in turn used in the objective function
of a Competitive Swarm Optimization algorithm [30] to train
the GRU network for better performance. The proposed system
is able to perform competitively after a number of iterations.

The major contributions of this paper include 1) a GRU-
based robotic motion planning system with the support of
competitive swarm optimization, 2) accurate writing sequence
generation based on a small dataset, and 3) the implementation
of the proposed robotic calligraphy on a robot arm for callig-
raphy writing with diverse and aesthetically pleasing results.

II. PRELIMINARY

A. Gated Recurrent Unit Network

The key fundamental algorithms adopted in this work is the
Gated Recurrent Unit (GRU) networks, which is an improved
variant of Recurrent Neural Network [31]. A typical GRU
network as shown in Fig. 1 involves two “gates”: an update
gate z, and a reset gate r. The update gate defines the amount
of previous memory saved and available to the current time
step, and the reset gate specifies the way of combining the new
input information with the previous memory. Given a time t,
the update and reset gates can be expressed as:

zt = δ(Wz · [ht−1, xt]), (1)

rt = δ(Wr · [ht−1, xt]), (2)

where δ(·) is a sigmoid(·) activation function; Wz and Wr

denote the weights of the update and reset gates, respectively;
Xt represents the input at the t-th time; and ht−1 indicates

 

Fig. 2. Basic procedure of CSO

the previous activation state. The current hidden state ht is a
linear interpolation between the previous activation state ht−1

and a candidate activation h̃t:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t, (3)

where ⊙ is an element-wise multiplication and h̃t is deter-
mined by:

h̃t = tanh(W · [rt ⊙ ht−1, xt]). (4)

B. Competitive Swarm Optimizer

The Competitive Swarm Optimizer (CSO) algorithm is a
heuristic search algorithm [30], inspired by the particle swarm
optimization [32], [33]. In a CSO algorithm, the update of a
particle involves neither the best position of every particle,
nor the global best position. Instead, a pair-wise competition
mechanism is used. During each optimization iteration, the
particles that lose the competition with their peers will update
their positions by learning from the winners.

The procedure is shown in Fig. 2. In the t-th genera-
tion, two particles are randomly selected from the population
SwarmP (t) to have a competition, then the winner and loser
are determined by their fitness in the environment. The winner
particle will retain the original position, and the loser particle
will update its position by learning from the winner. After
a number of these selection-competition-update cycles, the
winners and losers will jointly form the population of the
(t+1)-th generation, (SwarmP (t+1)), to facilitate the next
iteration.

III. PROPOSED METHOD

A. Approach Overview

The proposed system allows calligraphy robots to learn to
write high-quality numerals in a way close to human writing
habits, especially the order of each writing part. The learning
process is summarized in Fig. 3, through five subsystems:(1)
VAE-based stroke feature extraction module, (2) GRU-based
trajectory generator module, (3) robotic system module, (4)
evaluation system module, and (5) optimization module.

First of all, a pre-processing is required to extract the
mean and covariance information of sample images, so that
the means and covariances are normalized to an interval to
control output diversity. In order to reduce the difficulty of
the pre-processing, a Variational Autoencoder (VAE) network



3

Fig. 3. Training procedure of the proposed robotic writing system.

[34] is adopted here to extract the mean and covariance
information. In the pre-processing, training sample images are
input to VAE, and the output is images generated by VAE.
The parameters of VAE are optimized by minimizing the mean
square error between the output distribution of the encoder and
Kullback-Leibler (KL) divergence of the multivariate standard
Gaussian distribution.

When the pre-processing has been completed, the procedure
of Fig. 3 starts. The trajectory generator consists of a cyclic
GRU network. The input of the GRU unit is a 28× 28 blank
image, and the input of the hidden layer is a Gaussian noise,
z ∼ N(µ|Σ), whose mean µ and covariance Σ are determined
by the pre-processing. Then, the GRU-based generator receives
the Gaussian sampling to output a new trajectory position, Q⃗.
Then, the new trajectory position is converted into the robot’s
joint values by inverse kinematics calculation. The robot arm
uses these new manipulator joint values to link the previous
point output from the previous GRU cell to the new point.

A camera captures the image of the current stroke and sends
the captured image to the next loop of the GRU network.
This loop repeats until the numeral has been completed. Then,
an evaluation system calculates (1) shape similarity between
the generated result and the training sample, (2) trajectory
sequence similarity between the result and its sequence label,
L⃗, and (3) central point vector loss. These three similarities
are regarded as the GRU’s performance, which is sent to the
optimization module to optimize the GRU-based generator.
The writing of numerals is used as a running example for
technical explanation and experimentation in this paper, but
the proposed system can be readily applied to the automatic
writing of other letters or characters. The implementation of
each system in the training procedure is specified as follows:

B. VAE-based Stroke Feature Extraction

A traditional Autoencoder network consists of two parts:
an encoder and a decoder. The encoder compresses the input,
i.e. high-dimensional data, into a latent code, and the decoder
attempts to reconstruct the input from the latent code. The
Variational Autoencoder (VAE) network is an upgraded ver-
sion of the auto-encoder network by [35], [36]. VAE learns the
feature distribution of the input data set. In this work, the input
of the VAE is a stroke training sample X , and the output of
the VAE is a reconstruction of input data by the VAE network,
denoted as Y . The main components of the VAE utilized in
this work are introduced as follows:

Encoder: The encoder is mainly composed of a convolution
layer and a pooling layer. In the convolution layer, the input
images are convoluted to extract different features of the
images. Suppose the single channel input of the encoder is
image data xn−1, the n-th feature map xn can be calculated
as:

xn = ζ(xn−1 ⊗Wn + bn), (5)

where ζ(·) denotes an activation function Relu(·); Wn and
bn express the weights and bias of the n-th convolution
kernel, respectively. The generated feature map goes through a
pooling layer which divides the input feature map into several
rectangular regions and aggregates each rectangular region as
its output. Particularly in this work, the outputs of the encoder
are two feature vectors, including a mean value vector µ and
a covariance value vector Σ.

Decoder: Assuming ε ∼ N(0, I), that is, ε obeys the mul-
tivariate standard Gaussian distribution N(0, I), where 0 and
I represent the 0 matrix mean vector and the identity matrix
vector, respectively.The input of the decoder z is computed as



4

Eq. 6. Given the output of the (n− 1)-th decoder layer yn−1,
the output of the n-th decoder layer yn is computed as Eq. 7:

z = µ+ ε ∗ Σ, (6)

yn = δ(Gnyn−1 + cn) (7)

where Σ denotes a diagonal matrix with the value of vector
σ as diagonal elements, ∗ denotes the vector ε is multiplied
by the diagonal elements of the matrix Σ, and the result is
in the form of a vector, δ(·) denotes an activation function
sigmoid(·); Gn and cn represent the weights and bias of the
n-th full-connection layer. In this work, the final output of the
encoder after training is a series of stroke trajectory sequences.

Loss Function: This work adopts the most commonly used
loss function, that is the sum of the mean square error (MSE)
between the input data X and the reconstructed data Y , and
the Kullback-Leibler (KL) divergence between the encoder
output and the standard Gaussian distribution. Note that the
purpose of the KL divergence is to assist the encoder to
obtain the posterior probability distribution P (X|zi), so as
to approximate the real probability distribution P (Z) of latent
codes. Because P (Z) is assumed to be a standard multivariate
Gaussian distribution N(0, I), the KL loss function is then
used to calculate the distance between P (X|zi) and N(0, I).
The Loss(X,Y ) is defined as:

Loss(X,Y ) =
1

2m

m∑
i=1

(xi − yi)
2

+KL[N(µ(x),
∑

(x))∥N(0, I)]

(8)

where µ(x) denotes the average value of the output of the
encoder;

∑
(x) denotes the covariance of the output of the

encoder; xi and yi denotes a single sample in the input data X
and reconstructed data Y , respectively. The parameters of the
VAE are optimized by using the back-propagation algorithm
due to its effectiveness and wide availability although multiple
other approaches may also be applied.

The VAE network structure used in this method is in-
troduced as follows: The encoder is a convolutional neural
network, which consists of two convolution layers, two maxi-
mum pooling layers, and two fully-connected layers. The first
convolution layer consists of 10 convolution kernels, each
kernel’s size is 5 × 5. Each convolution kernel generates a
feature image of 12×12 pixels. The second convolution kernel
contains 20 convolution kernels, each kernel’s size is 5 × 5.
Each convolution kernel generates a feature image with a
resolution of 8 × 8 pixels. The second-largest pooling layer
contains 20 convolution kernels, each of which is 2 × 2 in
size. Each convolution kernel generates a feature image with
a resolution of 4× 4 pixels.

In the fourth fully-connected layer, the two outputs for the
means and covariances respectively contain 28 neurons. The
consideration of this setting is: Within the subsequent trajec-
tory generator networks, i.e., GRU networks, the dimensions
of the means and covariances of the pre-trained VAE encoder
respectively equal to those of the means and covariances of
the multivariate Gaussian distribution of the sampled trajectory
points; in addition, the trajectory points sampled from the

distribution are written in a blank image with the 28 × 28
dimensions; therefore, the dimension value, 28, is more in line
with the dimensions of writing image. The decoder consists
of only two fully-connected layers. The two fully connected
layers have 100 and 784 neurons, respectively. After a pre-
training, the encoder part is removed and the decoder is
improved by using the GRU network.

Pre-training: In the VAE’s pre-training phase, the input
of VAE is the stroke training sample, and the output is the
reconstructed image of VAE. The parameters of the network
are optimized by minimizing the mean square errors of the
input and output images, the KL divergences of the output
distribution and multivariate Gaussian distribution of the VAE
encoder, via an ordinary back-propagation method.

C. GRU-based Trajectory Generator

The trajectory generator uses a cycle-GRU network to
generate the probability distribution of every trajectory point.
In each cycle, the GRU network generates a mean value of
a ternary Gaussian distribution. The covariance matrix of the
ternary Gaussian distribution is determined by the hidden state
h of the GRU network in the loop. Then, the calligraphy robot
generates a digital trajectory point coordinate Qi = (xi, yi, zi)
by sampling the ternary Gaussian distribution. xi, and yi
determine the horizontal and vertical coordinates of the robot
in its writing range, and zi represents the height of the brush
of the robot system from the writing plane. This height can
be used to control the thickness of the writing stroke (stroke
width information). The robot system links from the position
of the last track point to the current track point position,
which is regarded as one complete writing. According to
the complexity of writing each number, we can set different
network loop times for different numbers. For example, the
stroke of Numeral 1 is relatively simple, thus the number
of network cycles is set to 3. Another example is that the
stroke of Numeral 5 is more complicated, thus the number of
network cycles is set to 8. The specific number of cycles for
each numeral is detailed in the experimental section. If the
preset number of network cycles is set to k, then all trajectory
point value vectors Q⃗ = [Q0, Q1, · · · , Qk−1] can be finally
obtained.

Fig. 4 shows the basic structure of the stroke trajectory
generator model of Numeral 2. The cyclic network module
circulates 5 times in total. Each cyclic network module consists
of a GRU, a fully connected layer, an activation function
layer, and a robot system. The size of the hidden state h
of the gated recursive unit is set to 28 dimensions, the fully
connected layer has 3 neurons, and the activation function
uses the sigmod activation function. The above parameters
are set based on experimental experience. In the first recurrent
network module, the input of the GRU is a 28 ×28 pixel
blank image stretched into a one-dimensional vector p0. The
initial value h0 of the hidden layer of the GRU is set to
Gaussian noise. The mean value and covariance of Gaussian
noises are determined by the encoder output of the pre-trained
VAE; because it contains some characteristic information of
the training sample. Subsequently, the hidden layer state h1 of



5

 

Fig. 4. A block diagram showing the structure of the generator module.

the GRU is used as the input of the fully connected layer, and
a mean value of the first multivariate Gaussian distribution is
obtained through the calculation of the fully connected layer
and the activation function. The calculation for this step is as
follows:

hi = GRU uniti(pi−1, hi−1), i ∈ (0, k] (9)

where GRU uniti denotes the i-th GRU, hi denotes the hidden
layer state of the i-th gated recursive unit, and k represents
that the network module has cycled k times.pi−1, a 28 × 28-
dimensional vector, denoting the output of the previous cycle
of the GRU, which also serves as the input to the current cycle.

As mentioned above, hi is used to predict the mean value of
the multivariate Gaussian distribution through the calculation
of the fully connected layer and the activation function. The
covariances obtained from the pre-trained VAE are the covari-
ances in the multivariate Gaussian distribution; then hi are the
means of the multivariate Gaussian distribution. The sampled
trajectory points are obtained by sampling this multivariate
Gaussian distribution. The i-th mean µi of the multivariate
Gaussian distribution is calculated as follows:

µi = δ(f(hi)), i ∈ (0, k] (10)

where f(·) denotes the calculation of the fully connected layer,
and the variable value calculated by the δ(·) activation function
through the fully connected layer is mapped to a value between
0 and 1.

The i-th covariance of the multivariate Gaussian distribution
adopts the covariance output by the encoder of the pre-trained
VAE, which is denoted as Σi. In this way, we can sample
the multivariate Gaussian distribution and three-dimensional
coordinates Q1(x1, y1, z1). Then, the i-th probability density

expression and sampling process of the ternary Gaussian
distribution N(µi,Σi) can be expressed as follows:

N(xi|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp[−1

2
(x−µi)

TΣ−1(x−µi))],

(11)
Qi ∼ T ×N(xi|µi,Σi) (12)

where xi is the sampled value from N(µi,Σi) and Qi

denotes the coordinates of the three-dimensional trajectory
points obtained by sampling. Note that when we sample the
ternary Gaussian distribution, the sampled value is multiplied
by T . The mean value obtained by sampling the multivariate
Gaussian distribution is between 0 and 1, and the range of the
horizontal and vertical coordinates of our trajectory points is
between 0 and 28. Therefore, the sampling of the horizontal
and vertical coordinates must be multiplied by a value T ,
where T is equal to 28, to obtain a better coordinate value.
The third dimension of Qi,zi represents the height of the brush
of the robot system from the robot writing plane. Empirically,
zi is set to between 0 and 5. In summary, for the abscissa and
ordinate, T is set to 28, and for the height coordinate, T is
set to 5.

Then, the currently obtained coordinates Qi are sent into
the robot system. After the inverse kinematics calculation, the
robot system converts the coordinates into its motion joint
values, which are used by the robot to complete the writing of
this step, and obtains the image of the i-th stroke. Then, input
the i-th stroke image into the GRU’s (i + 1)-th unit, and the
hidden layer state hi of the i-th GRU unit is used as the initial
hidden state of the (i+1)-th GRU unit. Next, the state passes
through the fully connected layer, activation function layer,
and robot system, and then obtain the (i+1)-th stroke image.
This cycle repeats until a complete Numeral 2 is written.

We use the GRU network for two reasons: 1) GRU networks
are more robust than recurrent neural networks; since GRU



6

 

Fig. 5. Sequential points of Numeral 2

networks allow means of multivariate Gaussian distributions
to obtain more generalized values to bring better diversity
writing performance. 2) The total number of parameters of
a GRU network is smaller than that of an LSTM model,
resulting in fewer computational costs in training. We take use
of the cyclicity and excellent network performance of the GRU
network to imitate each stroke written by the robot as a GRU
recurrent layer, which realizes the sequential writing ability
of the robot. In addition, the Competitive Swarm Optimizer
evolutionary computing method is used to solve the problem
that the robot cannot optimize its trajectory generator network
by using error back-propagation methods, so that the robot can
learn well and autonomously.

D. Evaluation System

The writing quality of the numerals is evaluated by combing
three similarities, including the shape similarity, trajectory
sequence similarity, and central position similarity, which
jointly represent the overall loss. The shape loss is obtained
by calculating the similarity between the input numerals and
the robot’s writing results. The trajectory sequence loss is
represented by the similarity between the trajectory sequence
label vector and the generated trajectory sequence by the
generator. The central position loss is defined as the gap
between the central positions of the generated writing result
and a training sample.

The calculation method of the central position loss is
shown in Fig. 5. This figure takes Numeral 2 as an example;
the trajectory sequence (five points in total) of Numeral 2
is represented by: Q⃗ = [P1, P2, P3, P4, P5], where the i-
th point coordinate is denoted as Pi = (xi, yi, zi). The
coordinate of the central point of the trajectory sequence
Pm = (xm, ym, zm) is defined by: xm =

∑N
i xi

N , ym =
∑N

i yi

N

and zm =
∑N

i zi
N .

Denote the central position sequence vector of Q⃗’s as M⃗ ,
which is defined as: M⃗ = [(x1−xm, y1− ym, z1− zm),(x2−
xm, y2 − ym, z2 − zm),(x3 − xm, y3 − ym, z3 − zm),(x4 −
xm, y4 − ym, z4 − zm),(x5 − xm, y5 − ym, z5 − zm)]. In this
work, the cosine similarity, ψ(·), is employed to represent the
shape, trajectory sequence, and central position similarities.

The cosine similarity is calculated as follows:

ψ(p, p̂) =
p · p̂

∥p∥ · ∥p̂| + η
, (13)

where p and p̂ are two vectors that need to be calculated;and
η is a positive number close to 0.

Based on the cosine similarity, the fitness function express-
ing the quality of the writing result is defined as:

f = −α · ψ(P, P ′)− β · ψ(Q,Q′) + γ · ψ(M,M ′), (14)

where f denotes the fitness value; ψ(·) is the cosine similarity
function; P and P ′ are vectors transformed from a numeral
sample and the corresponding robotic writing result, respec-
tively; Q and Q′ are vectors representing the ground truth
writing sequence and the trajectory sequence generated by
the proposed GRU-based generator; M and M ′ the vectors
obtained by centralizing Q and Q′, respectively; and α, β, and
γ are weights to represent the significance of the three types
of losses. In the experiment, α, β and γ are set to 0.2, 0.5,
and 0.3, respectively. Note that the number of each similarity’s
target samples is set to five in the valuation systems, i.e., a
human engineer labels only five samples for each numeral’s
writing sequence.

E. Optimization module

In order to optimize the trajectory generator, the Compet-
itive Swarm Optimizer (CSO) algorithm is employed [30].
The CSO algorithm optimizing the GRU network process is
specified as follows: Step 1: Initialize the particle dimension
in the particle swarm of the CSO algorithm, (i.e., total number
of GRU networks parameters). Here, the number of particles
in the initialized particle swarm is n, each of which represents
one GRU network. Step 2: Determine whether the CSO
algorithm has reached the termination condition, which is
the iteration amount of the CSO algorithm. Step 3: If the
termination condition has not been reached, according to the
fitness value of each particle (i.e., the output of the loss
function in this paper), the evolution and selection of particles
are used to obtain the next generation of particle swarms
(i.e., the new parameters of the GRU network). After the last
iteration is terminated, the optimal particle value is obtained as
the parameter value of the final GRU network. Step 4: Update
the parameters of the n GRU network with the values of the
new generation particle swarms and return to Step 3.

Writing trajectory points obtained from the GRU network
are sent to the robot system and are converted into the robotic
joint coordinates, thereby obtaining the final robot writing
results. This process must involve the robot’s manipulator
hardware, which is unknown to the GRU network. There-
fore, final written errors cannot be optimized by the back-
propagation algorithm for the GRU network. Alternatively,
we use the CSO evolutionary calculation method to update
the parameters of the GRU network according to the CSO’s
fitness values defined in Eq. (14). The adaptation of CSO with
key parameter setup is discussed in the rest of this section.

Swarm: The swarm consists of Nt particles, where t is
the index of the current iteration. Each particle P (t) contains



7

the position and velocity information of the writing point,
which are collectively represented as vectors ⃗x(t) and ⃗v(t),
( ⃗x(t), ⃗v(t) ∈ RD); the dimension D of the vector is equal to
the number of parameters used in the GRU-based generator.
The value of each dimension of the D dimension vector is
bounded:

xmin
j < xi,j(t) < xmax

j ; j = 1, 2, · · · , Nt, (15)

where xmin
j and xmax

j denote the minimum and maximum
values of the j-th dimension of each position vector ⃗x(t) in
the t-th generation population. The minimum and maximum
values can be determined by the j-th parameter in the decoder
of the GRU-based generator.

Initialization of Swarm: After the boundaries of particle
position and velocity are established, the population is ran-
domly initialized:{
xi,j(0) = xmin

j + rand uniform(0, 1)(xmax
j − xmin

j )

vi,j(0) = 0
(16)

where rand uniform(0, 1) is a randomly generated number
between 0 and 1. xi,j(0) and vi,j(0) represent the spatial
position and speed of initialization, respectively. In this work,
the velocity values are initialized to 0.

Particle Updating: Within the population of Nt particles,
every particle is paired with another particle, so as to obtain
Nt/2 pairs. The winner and loser particles can be determined
by comparing the fitness values of each pair. In this work, the
particle with a lower objective value is the winner. Suppose
P1(t) and P2(t) are a pair of competitors in the t-iteration. The
competition process for Pwinner(t) and Ploser(t) are defined
as:

Pwinner(t) =

{
P1(t), if g(P1(t)) ≤ g(P2(t))

P2(t), otherwise
(17)

where g(·) is the fitness function as discussed in Section III-D,
and the optimization algorithm aims to minimize this function
to generate an optimal set of parameters of the trajectory
generator.

From this, the loser position vector ⃗xloser(t) updates its
position information by learning from the winner based on
the following principle:

⃗vloser(t+ 1) = β⃗1(t) ⃗vloser(t) + ⃗β2(t)( ⃗xwinner(t)− ⃗xloser(t)),

+ φ ⃗β3(t)( ⃗χ(t)− ⃗xloser(t))

⃗xloser(t+ 1) = ⃗xloser(t) + ⃗vloser(t+ 1),
(18)

where ⃗xloser(t) and ⃗vloser(t) respectively denote the position
and velocity vector of the loser in P1(t) and P2(t); ⃗β1(t),
⃗β2(t), and ⃗β3(t) are three randomly generated vectors in the

t-th competition; ⃗χ(t) is the average position of all particles
in the t-th iteration; and φ is the parameter that controls the
effect of ⃗χ(t).

After all the losers updated their positions with the support
of the winners, the CSO then moves to the next generation of
competitive evolution. This evolutionary process is repeated

Algorithm 1 Training Procedure Pseudo-code
Require:Population size Nt, maximum algebra g, and CSO
algorithm control average position parameters φ. Number k
of GRU units in GRU network. An blank vector p0, Gaussian
distribution noise h0 and covariance Σ determined by VAE
encoder output.

1: Use Eq. (16) to initialize Nt GRU network weights;
2: for j in 0:g do
3: Input p0, h0 into Nt GRU;
4: for i in 0:k do
5: Use Eqs. (9), (10), (11) and (12) to sample a

trajectory point Qi;
6: Robot writes the trajectory, which is captured as

a input image for the next cycle;
7: end for
8: Nt/2 pairs of GRU particles compete. Use Eq. (17)

to decide which one is a loser. Use Eq. (18) to update the
loser parameters.Then the loser and winner particles go to
the next iteration.

9: end for
Output: At the end of the iteration, assign the value of the

best particle to the parameters of the GRU network, which
is GRU network optimal weights.

Fig. 6. The hardware of the proposed framework and the structure of the
robot

until the termination condition is met, that is either an opti-
mal fitness value or a predetermined maximum algebra g is
achieved. The training procedure is presented as a pseudo-code
listed in Algorithm 1.

F. Robotic system

The calligraphy robot system used in this work is shown
in the left side of Fig. 6, which consists of a three degrees-
of-freedom robot arm and a camera mounted on a bracket.
A brush pen is mounted at the end actuator of the robot arm.
The whiteboard placed under the pen is the writing area of the
robot. When the robot completes the writing of one numeral,
the pen returns to its initial position. Then, the camera captures
the writing result as an image.

The mechanical setup of the robot is shown on the right
side of Fig. 6. In the figure, l represents the mechanical link;
x, y, and z are the coordinate axis of the robot; and j is the
steering gear of the robotic arm. The robot converts the three-
dimensional coordinate point Qi into three joint values θi =
(θ(1)i , θ(2)i , θ(3)i ) of the robot by inverse kinematics calculation,
using the approach as specified in the work of [14].



8

The robot continues to write strokes by following the
trajectory points generated in the series of GRU units; in other
words, the coordinate point Qi−1 of the previous GRU unit is
connected to the coordinate point Qi led by the current GRU
unit. For the very first GRU unit, there is no robotic action but
only the coordinate is generated. Once the numeral is written,
the camera system of the robot then captures the written image,
binarizes the result, and cuts the result to 28× 28 pixels. The
process is expressed as W (·). This image is used as the input
pi for the next GRU unit. The process of robot writing is
expressed as:

pi =

{
W (IK(Qi)), i = 0

W (IK(Qi−1), IK(Qi)), i > 0
(19)

where the transformation process of inverse kinematic is
defined as IK(·). Finally, the output of the generated model
is expressed as: pk = G(p0, h0), where G(·) represents the
trajectory generator.

In particular, recall the writing training process: First, a
trajectory sequence is obtained through the GRU trajectory
network and the robot writes the sequence; then the CSO
algorithm optimizes the GRU network using sampled and
evaluated results. Thus, implementing this process leads to the
time complexity of O(k*tg), passing k GRU units and a pair of
particles’ time in the CSO O(1). Let the number of iterations
and particle size be n and m respectively, then the total time
complexity of the proposed algorithm is: O(nm*k*tg).

IV. EXPERIMENTATION

To validate and evaluate the proposed system, the pro-
posed system was physically implemented and the writing
system was optimized through two training processes: (1)
using the traditional VAE training method (gradient back-
propagation) to train the encoder part of VAE; and (2) using
the CSO algorithm to optimize the trajectory generator. The
experimentation was performed on ten Arabic numerals. A
comparative study using the proposed system and the state-
of-the-art GAN-based [13] and reinforcement learning-based
(RL-based) robotic writing methods [4] is also reported in this
section.

A. Datasets and Settings

The “MNIST” data set was utilized in the experiments,
which includes 60,000 handwritten images of ten numerals
from “0” to “9”. Each image has been pre-processed with
the same size of 28 × 28 grey-scale pixels. However, in
the experiment, only two hundred samples for each numeral
were randomly selected as our experimental training samples.
Because our experiment only requires a small number of
samples to complete the training, selecting 200 samples helps
improve the training efficiency. Several training data utilized
in this work are shown in Fig. 7.

The population size Nt, maximum algebra g, and CSO algo-
rithm control average position parameters φ, were set to 300,
2,400, and 0.25, respectively. In addition, α, β and γ in Eq.
14 are set to 0.2, 0.5, and 0.3, respectively. The loop number
k of the GRU-based trajectory generator is set according to

 

Fig. 7. Illustrative training samples of ten numerals from “0” to “9” used in
the experiment, each row shows one type of a number with various variants.

the writing complexity of each numeral, and the range of k is
set from 3 to 8. Among them, the k values of numerals 0 to 9
are respectively set to: [7, 3, 5, 7, 4, 8, 7, 3, 7, 7].The parameters
in the paper are the best results obtained by tuning. The
corresponding tuning process is not shown due to the length
of the article.

B. Writing Results

The final result of the ten Arabic numerals is shown in
Fig. 8, with each numeral written 9 times. The written results
of each numeral are not identical to each other. Most of
the differences are subtle, but some are significant, such as
the result of Numeral 2. This phenomenon demonstrates that
the proposed system did not simply replicate a pre-defined
template, but used a Gaussian distribution noise to generate
diverse outputs to better simulate human writing results. To
reflect the efficiency of the proposed method, we have now
carried out experimental investigations into the training and
test writing time on the number ’5’ (implemented on a Linux
workstation with Intel(R) Core(TM) i7-6850K, one 1080ti and
PyTorch 1.10). The training time is 4.1 hours, but the test
writing time is the sum of the time spent for acquiring the
trajectory sequence (0.57 seconds) and the writing time of the
robot (3.0 seconds), which merely costs 3.57 seconds in total.

The writing process of the ten numbers are demonstrated
in Fig. 9. Numerals with complex shapes were set to have
more GRU units, such as Numerals 5, 8, and 9. In this figure,
the writing sequences of all numerals are in line with human
writing habits. This presents the most significant contribution
of this paper. This function was achieved by using a sequence
label with sequential points. In addition, the diversity of the
writing results shown in Fig. 8 proved that the sequential
points did not limit the system to generate various outputs.

The dynamic properties of the algorithm are mainly re-
flected in the robot’s writing processes within the GRU units.
Take three writing processes of Numeral ’2’ as an example,
as shown in Fig. 10. Each of these writing processes starts
with a different position, leading to a different position of
the subsequent strokes, so that the final writing outcomes are



9

 

Fig. 8. The final writing results of the ten numerals.

 

Fig. 9. The writing process of ten numerals.

diverse. The dynamic properties inherent within the writing
processes are enabled because of the fact that in each GRU
unit, the input is a captured image including written trajecto-
ries so far, with the hidden layer state of the output taken as
the mean of the ternary Gaussian distribution of the input, and
that the trajectory points are sampled from such a distribution,
calculated by the central loss function.

As with common practice in the literature, whether the
optimal state has been reached is determined with regard to
the curve of the mean fitness of the population particles chang-
ing against the number of iterations during the optimization
process of the CSO. For example, from the change curve of
Numeral ‘0’ as shown in Fig. 11, it can be observed that a
stable state is reached after 1,200 iterations, indicating that
the optimal GRU network parameters cannot be meaningfully
optimized any further.

Fig. 10. Three step-by-step writing processes of Numeral ’2’.

0 200 400 600 800 1000 1200 1400 1600
Iterations

0.7

0.6

0.5

0.4

0.3

0.2

0.1

M
ea

n 
fit

ne
ss

Number0

Fig. 11. Mean particle fitness value vs. number of iterations for numeral ’0’.

C. Ablation Experiment

In order to verify the effectiveness of the proposed central
position similarity, a new fitness function is defined as:

F ′ = −λ · ψ(P, P ′)− (1− λ) · ψ(Q,Q′), (20)

where λ is a parameter to reconcile the balance between image
similarity and sequence similarity. λ is empirically set to 0.4
that the best result obtained by tuning. In contrast to Eq. (14),
Eq. (20) removes the central position similarity loss. Thus, we
speculate that the diversity of writing results will be affected.



10

TABLE I
DIVERSITY ASSESSMENT. VARIANCE AND ENTROPY ARE USED AS TWO

INDICATORS TO EVALUATE THE DIVERSITY OF WRITING RESULTS.
LARGER VALUES INDICATE BETTER DIVERSITY. EQS. (14) AND (20)

RESPECTIVELY INDICATE THE RESULTS WITH AND WITHOUT THE CENTER
LOSS.

Numerals Variance Entropy

Eq.(20) Eq.(14) Eq.(20) Eq.(14)

0 0.201 0.294 0.565 0.615
1 0.172 0.221 0.21 0.309
2 0.232 0.305 0.397 0.493
3 0.224 0.282 0.413 0.543
4 0.197 0.233 0.471 0.551
5 0.213 0.246 0.487 0.645
6 0.252 0.283 0.37 0.502
7 0.198 0.242 0.298 0.408
8 0.23 0.277 0.498 0.631
9 0.216 0.243 0.365 0.527

We measure the diversity of a data set by calculating the
variance and entropy [39], [40] of the image data set. Table I
shows the variances and entropies of the numeral training data
set, the writing result set produced by the ablation experiment,
and the writing result set of the methods in this chapter. The
greater the variance and entropy of the data set, the greater
the internal differences of the data set, and the higher the
diversity of the data set. In Table I, the variance and entropy
of each numeral set with the CenterLoss are higher than that
of the corresponding numeral set without the CenterLoss in
the ablation experiment. Note that the larger variance and
entropy of our proposed method are shown in bold in Table
I. Therefore, our method is superior to the method in the
ablation experiment in both visual and quantitative analysis.
These results prove the effectiveness of our method to improve
the diversity of writing results.

 

Fig. 12. The writing results of ablation experiment.

The final writing results of the ten Arabic numerals are
shown in Fig. 12. Each numeral has four writing results.
Compared with the experimental results in Fig. 8, we cannot
clearly identify the differences amongst each numeral’s results;
the writing of each numeral tends there is no diversity shown
to one fixed pattern.

Moreover, to exhibit the diverse advantages of our method,
the GANtrain [41] method was added in a new ablation ex-
periment. In the GANtrain method, a VGG16 [42] is adopted
to predict each input image’s class. Therefore, in the new
ablation, the writing results were used as the train set of the
VGG16 and training samples were used as the test set. Thus,

higher predict accuracies of the VGG16 represented higher
recall rates, i.e., better writing diversity. Therefore, Fig. 13-(a)
verifies the predicted accuracies with the CenterLoss are much
higher than those without the CenterLoss.

0 10 20 30 40 50
Epoches

45

50

55

60

65

70

75

Di
ve

rs
ity

 a
cc

ur
ac

y

with CenterLoss
without CenterLoss

(a)

0 10 20 30 40 50
Epoches

40

50

60

70

80

90

100

Qu
lit

y 
ac

cu
ra

cy

Ours
GANCC
RL

(b)

Fig. 13. The GANtrain and GANtest compare results. (a) represents diversity
curves and (b) represents a quality comparison curve of multiple writing
methods.

D. Comparison

To verify the advantages of the proposed method compared
to other methods, a GAN-based robotic writing system [13]
and a reinforcement learning-based robotic writing system [4]
is used for comparison. These methods did not support the
sequential writing feature. Therefore, we used the Fréchet
Inception Distance (FID) [37], MAE, PSNR, SSIM [38], and
PerLoss [39] to compare the writing qualities of these studies.
Here, the PerLoss is the L1 loss of the middle layer feature
map by using a VGG16 classifier. Note that the VGG classifier
was pretrained by a dataset with ten numerals. The FID, MAE,
and PerLoss with smaller values indicate that the written result
is closer to the training data set, while PSNR and SSIM are
on the contrary. Table II shows the results between the results
generated by the three methods.

The best values are highlighted in bold in this table.
Our proposed method archived the best performance for all



11

TABLE II
QUALITY ASSESSMENT. FRÉCHET INCEPTION DISTANCE (FID) [37], MAE, PSNR, SSIM [38], AND PERLOSS [39] ARE USED TO COMPARE THE

WRITING QUALITIES OF OURS, GAN-BASED [13] AND RL-BASED METHODS [4].

Numerals FID MAE PSNR SSIM PerLoss

GANCC RL Ours GANCC RL Ours GANCC RL Ours GANCC RL Ours GANCC RL Ours

0 63.96 N/A 52.98 0.1669 N/A 0.1314 8.6415 N/A 9.8041 0.4751 N/A 0.5562 0.3426 N/A 0.2874
1 54.62 50.04 22.94 0.0817 0.1012 0.0552 11.9416 10.4787 13.9254 0.4346 0.2692 0.5906 0.3539 0.4652 0.3029
2 37.28 53.51 28.33 0.1813 0.1982 0.1157 8.0771 7.5871 10.3467 0.306 0.2314 0.543 0.4383 0.5212 0.3109
3 32 55.52 27.01 0.1835 0.2039 0.11 8.0293 7.4583 10.6377 0.2814 0.1388 0.5514 0.4685 0.5319 0.304
4 22.85 N/A 57.82 0.1544 N/A 0.1264 8.7693 N/A 9.8044 0.3372 N/A 0.3902 0.4311 N/A 0.344
5 35.2 N/A 73.07 0.1956 N/A 0.15 7.8008 N/A 8.9918 0.2807 N/A 0.4389 0.4483 N/A 0.3554
6 42.76 N/A 37.98 0.134 N/A 0.0997 9.5891 N/A 11.1094 0.4099 N/A 0.54 0.3719 N/A 0.2803
7 49.78 43.51 34.67 0.113 0.1499 0.0871 10.5046 8.9214 11.7104 0.4547 0.2348 0.5499 0.3285 0.4889 0.285
8 49.99 N/A 46.95 0.1956 N/A 0.1301 7.6917 N/A 9.8308 0.3145 N/A 0.559 0.4667 N/A 0.2927
9 45.54 N/A 41.68 0.2179 N/A 0.0946 7.0867 N/A 11.3901 0.2011 N/A 0.5568 0.4912 N/A 0.2652

numerals in MAE, PSNR, SSIM, and PerLoss. It is also clear
that except for Numerals 4 and 5 in FID, the proposed system
achieved better performance on the rest eight numerals. Since
Numerals 4 and 5 are composed of two trajectories, more
training iterations might be required for the proposed system.
It is still difficult for the RL-based method to write complex
numerals, such as 0, 4, 5, 6, 8, 9 in Table II. Therefore, the
comparison proved that the proposed method not only can
achieve the sequential writing of numerals, but also can have
a better writing quality than the GAN-based and RL-based
methods.

To qualitatively compare the proposed method with similar
studies, the quality of writing is evaluated by the GANtest
[41]. In contrast to the GANtrain, the writing results of the
three methods were used as the test set of a VGG16, and the
training samples were used as the training set. Thus, higher
predict accuracies of the VGG16 represented higher accuracy
rates. Therefore, Fig. 13-(b) verifies the prediction accuracies
of our method were the best in the comparison.

V. CONCLUSION

This paper presented a new learning system for robotic
writing. This method used GRU units to form a trajectory
generator of numerals. With the assistance of a sequence label,
the system can generate accurate trajectories, which were
close to human’s writing habits. In addition, a pre-training
operation was employed to explore the input distributions to
produce system inputs, and the CSO heuristic search algorithm
was used to optimize the trajectory generator. The system
was evaluated on Arabic numerals using the MNIST data
set. Comprehensive experiments demonstrated the comparative
performance of the proposed approach in reference to the
state-of-the-art methods, especially with a writing sequence
in alignment with human writing habits.

Whilst this work has addressed a number of important
issues for robotic character writing, several difficulties have
been encountered when we carried out the investigation. In
particular, the following two have drawn our specific attentions
to: (1) For writing different numbers, the number of cycles of
the GRU unit cannot be automatically determined but has to
be empirically or manually specified. A mechanism for setting
this parameter through self-adaptation during the learning
process remains active research. (2) The training time for

numeric writing is relatively long (although this does not affect
the very efficient run-time performance). Alternative meta-
learning methods [43], [44] are worth of being considered as
a piece of interesting future work.

ACKNOWLEDGMENTS

This should be a simple paragraph before the References to
thank those individuals and institutions who have supported
your work on this article.

REFERENCES

[1] F. Chao, Y. Huang, C.-M. Lin, L. Yang, H. Hu, and C. Zhou, “Use
of automatic Chinese character decomposition and human gestures for
Chinese calligraphy robots,” IEEE Transactions on Human-Machine
Systems, vol. 49, no. 1, pp. 47–58, 2018.

[2] D.-t. Liang, D. Liang, S.-m. Xing, P. Li, and X.-c. Wu, “A robot
calligraphy writing method based on style transferring algorithm and
similarity evaluation,” Intelligent Service Robotics, pp. 1–10, 2019.

[3] X. Gao, C. Zhou, F. Chao, L. Yang, C.-M. Lin, and C. Shang, “A robotic
writing framework–learning human aesthetic preferences via human-
machine interactions,” IEEE Access, vol. 7, pp. 144 043–144 053, 2019.

[4] R. Wu, C. Zhou, F. Chao, L. Yang, C.-M. Lin, and C. Shang,
“Integration of an actor-critic model and generative adversarial
networks for a Chinese calligraphy robot,” Neurocomputing, vol. 388,
pp. 12 – 23, 2020. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0925231220300886

[5] P. Schaldenbrand and J. Oh, “Content masked loss: Human-like brush
stroke planning in a reinforcement learning painting agent,” in Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.
AAAI Press, 2021, pp. 505–512.

[6] H. Ma, Q. Zhou, H. Li, and R. Lu, “Adaptive prescribed performance
control of a flexible-joint robotic manipulator with dynamic uncertain-
ties,” IEEE Transactions on Cybernetics, 2021.

[7] X. Zhang, Y. Li, Z. Zhang, K. Konno, and S. Hu, “Intelligent Chinese
calligraphy beautification from handwritten characters for robotic writ-
ing,” The Visual Computer, vol. 35, no. 6-8, pp. 1193–1205, 2019.

[8] F. Chao, Y. Huang, X. Zhang, C. Shang, L. Yang, C. Zhou, H. Hu, and
C. M. Lin, “A robot calligraphy system: From simple to complex writing
by human gestures,” Engineering Applications of Artificial Intelligence,
vol. 59, pp. 1–14, 2017.

[9] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, and S. Levine, “Vision-
based multi-task manipulation for inexpensive robots using end-to-end
learning from demonstration,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 3758–3765.

[10] H. Chen, “Robotic manipulation with reinforcement learning, state
representation learning, and imitation learning (student abstract),”
in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational
Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February



12

2-9, 2021. AAAI Press, 2021, pp. 15 769–15 770. [Online]. Available:
https://ojs.aaai.org/index.php/AAAI/article/view/17881

[11] M. Sharifi, A. Zakerimanesh, J. K. Mehr, A. Torabi, V. K. Mushahwar,
and M. Tavakoli, “Impedance variation and learning strategies in human-
robot interaction,” IEEE Transactions on Cybernetics, 2021.

[12] J. Zeng, Q. Chen, Y. Liu, M. Wang, and Y. Yao, “Strokegan: Reducing
mode collapse in chinese font generation via stroke encoding,” in Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence,
IAAI 2021, The Eleventh Symposium on Educational Advances in
Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.
AAAI Press, 2021, pp. 3270–3277.

[13] F. Chao, J. Lv, D. Zhou, L. Yang, C.-M. Lin, C. Shang, and C. Zhou,
“Generative adversarial nets in robotic Chinese calligraphy,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1104–1110.

[14] R. Wu, C. Zhou, F. Chao, L. Yang, C.-M. Lin, and C. Shang, “Ganc-
crobot: Generative adversarial nets based Chinese calligraphy robot,”
Information Sciences, vol. 516, pp. 474 – 490, 2020. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025519312071

[15] T. Wang, W. Q. Toh, H. Zhang, X. Sui, S. Li, Y. Liu, and W. Jing,
“Robocodraw: Robotic avatar drawing with gan-based style transfer
and time-efficient path optimization,” in The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020. AAAI Press, 2020, pp. 10 402–10 409. [Online]. Available:
https://aaai.org/ojs/index.php/AAAI/article/view/6609

[16] Y. Gao and J. Wu, “Gan-based unpaired chinese character image
translation via skeleton transformation and stroke rendering,” in The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence
Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020. AAAI Press, 2020, pp. 646–653. [Online].
Available: https://aaai.org/ojs/index.php/AAAI/article/view/5405

[17] Q. Li, F. Chao, X. Gao, L. Yang, C.-M. Lin, C. Shang, and C. Zhou,
“A robotic chinese stroke generation model based on competitive swarm
optimizer,” in Advances in Computational Intelligence Systems, Z. Ju,
L. Yang, C. Yang, A. Gegov, and D. Zhou, Eds. Cham: Springer
International Publishing, 2020, pp. 92–103.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[19] D. Kong and F. Wu, “Hst-lstm: A hierarchical spatial-temporal long-
short term memory network for location prediction,” in Proceedings
of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial
Intelligence Organization, 7 2018, pp. 2341–2347. [Online]. Available:
https://doi.org/10.24963/ijcai.2018/324

[20] J. Wang, T. Sun, B. Liu, Y. Cao, and H. Zhu, “Clvsa: A
convolutional lstm based variational sequence-to-sequence model with
attention for predicting trends of financial markets,” in Proceedings
of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 3705–3711. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/514

[21] D. Li, R. Rzepka, M. Ptaszynski, and K. Araki, “Emoji-aware attention-
based bi-directional gru network model for chinese sentiment analysis.”
in LaCATODA/BtG@ IJCAI, 2019, pp. 11–18.

[22] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, and Y. Xia, “Trajectory
planning for hypersonic reentry vehicle satisfying deterministic and
probabilistic constraints,” Acta Astronautica, vol. 177, pp. 30–38, 2020.

[23] C. Runqi, A. Tsourdos, A. Savvaris, C. Senchun, and X. Yuanqing,
“High-fidelity trajectory optimization for aeroassisted vehicles using
variable order pseudospectral method,” Chinese Journal of Aeronautics,
vol. 34, no. 1, pp. 237–251, 2021.

[24] R. Chai, A. Tsourdos, A. Savvaris, S. Wang, Y. Xia, and S. Chai,
“Fast generation of chance-constrained flight trajectory for unmanned
vehicles,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 57, no. 2, pp. 1028–1045, 2020.

[25] R. Chai, A. Tsourdos, H. Gao, Y. Xia, and S. Chai, “Dual-loop tube-
based robust model predictive attitude tracking control for spacecraft
with system constraints and additive disturbances,” IEEE Transactions
on Industrial Electronics, vol. 69, no. 4, pp. 4022–4033, 2021.

[26] X. Gao, C. Zhou, F. Chao, L. Yang, C.-M. Lin, T. Xu, C. Shang,
and Q. Shen, “A data-driven robotic chinese calligraphy system using

convolutional auto-encoder and differential evolution,” Knowledge-
Based Systems, vol. 182, p. 104802, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950705119302771

[27] D. Xie, X. Zhang, Q. Gao, J. Han, S. Xiao, and X. Gao, “Multiview
clustering by joint latent representation and similarity learning,” IEEE
transactions on cybernetics, vol. 50, no. 11, pp. 4848–4854, 2019.

[28] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in NIPS 2014
Workshop on Deep Learning, December 2014, 2014.

[29] Z. Li, P. Wang, H. Lu, and J. Cheng, “Reading selectively via
binary input gated recurrent unit,” in Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19. International Joint Conferences on Artificial Intelligence
Organization, 7 2019, pp. 5074–5080. [Online]. Available: https:
//doi.org/10.24963/ijcai.2019/705

[30] R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale
optimization,” IEEE Transactions on Cybernetics, vol. 45, no. 2, pp.
191–204, 2014.

[31] W. Zheng and G. Chen, “An accurate gru-based power time-series
prediction approach with selective state updating and stochastic opti-
mization,” IEEE Transactions on Cybernetics, 2021.

[32] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm op-
timization,” in Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), vol. 3. IEEE, 1999, pp.
1945–1950.

[33] Q. Yang, W.-N. Chen, T. Gu, H. Jin, W. Mao, and J. Zhang, “An adaptive
stochastic dominant learning swarm optimizer for high-dimensional
optimization,” IEEE Transactions on Cybernetics, 2020.

[34] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2014.
[35] F. Zhou, Q. Gao, G. Trajcevski, K. Zhang, T. Zhong, and F. Zhang,

“Trajectory-user linking via variational autoencoder,” in Proceedings
of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial
Intelligence Organization, 7 2018, pp. 3212–3218. [Online]. Available:
https://doi.org/10.24963/ijcai.2018/446

[36] D. Jin, B. Li, P. Jiao, D. He, and W. Zhang, “Network-specific
variational auto-encoder for embedding in attribute networks,” in
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 7 2019, pp. 2663–2669. [Online].
Available: https://doi.org/10.24963/ijcai.2019/370

[37] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Advances in Neural Information Processing Systems,
2017, pp. 6626–6637.

[38] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in
20th International Conference on Pattern Recognition. IEEE, 2010,
pp. 2366–2369.

[39] H. Yakura, Y. Koyama, and M. Goto, “Tool-and domain-agnostic pa-
rameterization of style transfer effects leveraging pretrained perceptual
metrics,” arXiv preprint arXiv:2105.09207, 2021.

[40] Q. Zhang, “Learning nash equilibria in zero-sum stochastic games via
entropy-regularized policy approximation,” Ph.D. dissertation, Georgia
Institute of Technology, 2020.

[41] K. Shmelkov, C. Schmid, and K. Alahari, “How good is my GAN?” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 213–229.

[42] S. Dodge and L. Karam, “Understanding how image quality affects
deep neural networks,” in Eighth International Conference on Quality
of Multimedia Experience (QoMEX). IEEE, 2016, pp. 1–6.

[43] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning
in neural networks: A survey,” 2020.

[44] J. Liu, F. Chao, L. Yang, C.-M. Lin, C. Shang, and Q. Shen, “Decoder
choice network for metalearning,” IEEE Transactions on Cybernetics,
pp. 1–14, 2021.


