664 research outputs found

    Pricing Carbon Emissions in China

    Get PDF
    The purpose of the paper is to provide a clear mechanism for determining carbon emissions pricing in China as a guide to how carbon emissions might be mitigated to reduce fossil fuel pollution. The Chinese Government has promoted the development of clean energy, including hydroelectric power, wind power, and solar energy generation. In order to involve companies in carbon emissions control, a series of regional and provincial carbon markets have been established since 2013. Since China’s carbon market was established in 2013 and mainly run domestically, and not necessarily using market principles, there has been almost no research on China’s carbon price and volatility. This paper provides an introduction to China’s regional and provincial carbon markets, proposes how to establish a national market for pricing carbon emissions, discusses how and when these markets might be established, how they might perform, and the subsequent prices for China’s regional and national carbon markets. Power generation in manufacturing consumes more than other industries, with more than 40% of total coal consumption. Apart from manufacturing, the northern China heating system also relies on fossil fuels, mainly coal, which causes serious pollution. In order to understand the regional markets well, it is necessary to analyze the energy structure in these regions. Coal is the primary energy source in China, so that provinces that rely heavily on coal receive a greater number of carbon emissions permits from the Chinese Government. In order to establish a national carbon market for China, a detailed analysis of eight important regional markets will be presented. The four largest energy markets, namely Guangdong, Shanghai, Shenzhen and Hubei, traded around 82% of the total volume and 85% of the total value of the seven markets in 2017, as the industry structure of the western area is different from that of the eastern area. The China National Development and Reform Commission has proposed a national carbon market, which can attract investors and companies to participate in carbon emissions trading. This important issue will be investigated in the paper

    Establishing National Carbon Emission Prices for China

    Get PDF
    The purpose of the paper is to establish national carbon emissions prices for the People’s Republic of China, which is one of the world’s largest producers of carbon emissions. Several measures have been undertaken to address climate change in China, including the establishment of a carbon trading system. Since 2013, eight regional carbon emissions markets have been established, namely Beijing, Shanghai, Guangdong, Shenzhen, Tianjin, Chongqing, Hubei and Fujian. The Central Government announced a national carbon emissions market, with power generation as the first industry to be considered. However, as carbon emissions prices in the eight regional markets are very different, for a variety of administrative reasons, it is essential to create a procedure for establishing a national carbon emissions price. The regional markets are pioneers, and their experience will play important roles in establishing a national carbon emissions market, with national prices based on regional prices, turnovers and volumes. The paper considers two sources of regional data for China’s carbon allowances, which are based on primary and secondary data sources, and compares their relative strengths and weaknesses. The paper establishes national carbon emissions prices based on the primary and secondary regional prices, for the first time, and compares both national prices and regional prices against each other. The carbon emission prices in Hubei, Guangdong, Shenzhen and Tianjin are highly correlated with the national prices based on the primary and secondary sources. Establishing national carbon emissions prices should be very helpful for the national carbon emissions market that is under construction in China, as well as for other regions and countries worldwide

    Human-Automation Allocations for Current Robotic Space Operations

    Get PDF
    Within the Human Research Program, one risk delineates the uncertainty surrounding crew working with automation and robotics in spaceflight. The Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI) is concerned with the detrimental effects on crew performance due to ineffective user interfaces, system designs and/or functional task allocation, potentially compromising mission success and safety. Risk arises because we have limited experience with complex automation and robotics. One key gap within HARI, is the gap related to functional allocation. The gap states: We need to evaluate, develop, and validate methods and guidelines for identifying human-automation/robot task information needs, function allocation, and team composition for future long duration, long distance space missions. Allocations determine the human-system performance as it identifies the functions and performance levels required by the automation/robotic system, and in turn, what work the crew is expected to perform and the necessary human performance requirements. Allocations must take into account each of the human, automation, and robotic systems capabilities and limitations. Some functions may be intuitively assigned to the human versus the robot, but to optimize efficiency and effectiveness, purposeful role assignments will be required. The role of automation and robotics will significantly change in future exploration missions, particularly as crew becomes more autonomous from ground controllers. Thus, we must understand the suitability of existing function allocation methods within NASA as well as the existing allocations established by the few robotic systems that are operational in spaceflight. In order to evaluate future methods of robotic allocations, we must first benchmark the allocations and allocation methods that have been used. We will present 1) documentation of human-automation-robotic allocations in existing, operational spaceflight systems; and 2) To gather existing lessons learned and best practices in these role assignments, from spaceflight operational experience of crew and ground teams that may be used to guide development for future systems. NASA and other space agencies have operational spaceflight experience with two key Human-Automation-Robotic (HAR) systems: heavy lift robotic arms and planetary robotic explorers. Additionally, NASA has invested in high-fidelity rover systems that can carry crew, building beyond Apollo's lunar rover. The heavy lift robotic arms reviewed are: Space Station Remote Manipulator System (SSRMS), Japanese Remote Manipulator System (JEMRMS), and the European Robotic Arm (ERA, designed but not deployed in space). The robotic rover systems reviewed are: Mars Exploration Rovers, Mars Science Laboratory rover, and the high-fidelity K10 rovers. Much of the design and operational feedback for these systems have been communicated to flight controllers and robotic design teams. As part of the mitigating the HARI risk for future human spaceflight operations, we must document function allocations between robots and humans that have worked well in practice

    Future Exploration Missions' Tasks Associated with the Risk of Inadequate Design of Human and Automation/Robotic Integration

    Get PDF
    NASA's Human Research Program (HRP) funds research efforts aimed at mitigating various human health and performance risks, including the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI). As such, within HRP, the Human Factors and Behavioral Performance (HFBP) Element tasked an evaluation of future HARI needs in order to scope and focus the HARI risk research plan. The objective was to provide a systematic understanding of the critical factors associated with effective HARI that will be necessary to achieve the future mission goals for near- and deep-space exploration. Future mission goals are specified by NASA Design Reference Missions (DRMs) that are pertinent to the HRP. The outcome of this evaluation is a set of NASA-relevant HARI tasks, factors, and interactions required for exploration-class missions

    Establishing National Carbon Emission Prices for China

    Get PDF
    The purpose of the paper is to establish national carbon emissions prices for the People’s Republic of China, which is one of the world’s largest producers of carbon emissions. Several measures have been undertaken to address climate change in China, including the establishment of a carbon trading system. Since 2013, eight regional carbon emissions markets have been established, namely Beijing, Shanghai, Guangdong, Shenzhen, Tianjin, Chongqing, Hubei and Fujian. The Central Government announced a national carbon emissions market, with power generation as the first industry to be considered. However, as carbon emissions prices in the eight regional markets are very different, for a variety of administrative reasons, it is essential to create a procedure for establishing a national carbon emissions price. The regional markets are pioneers, and their experience will play important roles in establishing a national carbon emissions market, with national prices based on regional prices, turnovers and volumes. The paper considers two sources of regional data for China’s carbon allowances, which are based on primary and secondary data sources, and compares their relative strengths and weaknesses. The paper establishes national carbon emissions prices based on the primary and secondary regional prices, for the first time, and compares both national prices and regional prices against each other. The carbon emission prices in Hubei, Guangdong, Shenzhen and Tianjin are highly correlated with the national prices based on the primary and secondary sources. Establishing national carbon emissions prices should be very helpful for the national carbon emissions market that is under construction in China, as well as for other regions and countries worldwide

    Simulation of heat transport in low-dimensional oscillator lattices

    Full text link
    The study of heat transport in low-dimensional oscillator lattices presents a formidable challenge. Theoretical efforts have been made trying to reveal the underlying mechanism of diversified heat transport behaviors. In lack of a unified rigorous treatment, approximate theories often may embody controversial predictions. It is therefore of ultimate importance that one can rely on numerical simulations in the investigation of heat transfer processes in low-dimensional lattices. The simulation of heat transport using the non-equilibrium heat bath method and the Green-Kubo method will be introduced. It is found that one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) momentum-conserving nonlinear lattices display power-law divergent, logarithmic divergent and constant thermal conductivities, respectively. Next, a novel diffusion method is also introduced. The heat diffusion theory connects the energy diffusion and heat conduction in a straightforward manner. This enables one to use the diffusion method to investigate the objective of heat transport. In addition, it contains fundamental information about the heat transport process which cannot readily be gathered otherwise.Comment: Article published in: Thermal transport in low dimensions: From statistical physics to nanoscale heat transfer, S. Lepri, ed. Lecture Notes in Physics, vol. 921, pp. 239 - 274, Springer-Verlag, Berlin, Heidelberg, New York (2016

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures

    Chemical Components from the Light Petroleum Soluble Fraction of Uvaria cordata (Dunal) Alston

    Get PDF
    Chromatographic separation of the light petroleum extract from the stem bark of Uvaria cordata (Dunal) Alston led to the isolation of the triterpenoids glutinol and taraxerol in addition to the cyclohexene derivatives, pipoxide and its chlorohydrin. A small amount of benzyl benzoate was also isolated

    Acetate Promotes T Cell Effector Function during Glucose Restriction.

    Get PDF
    Competition for nutrients like glucose can metabolically restrict T cells and contribute to their hyporesponsiveness during cancer. Metabolic adaptation to the surrounding microenvironment is therefore key for maintaining appropriate cell function. For instance, cancer cells use acetate as a substrate alternative to glucose to fuel metabolism and growth. Here, we show that acetate rescues effector function in glucose-restricted CD8+ T cells. Mechanistically, acetate promotes histone acetylation and chromatin accessibility and enhances IFN-γ gene transcription and cytokine production in an acetyl-CoA synthetase (ACSS)-dependent manner. Ex vivo acetate treatment increases IFN-γ production by exhausted T cells, whereas reducing ACSS expression in T cells impairs IFN-γ production by tumor-infiltrating lymphocytes and tumor clearance. Thus, hyporesponsive T cells can be epigenetically remodeled and reactivated by acetate, suggesting that pathways regulating the use of substrates alternative to glucose could be therapeutically targeted to promote T cell function during cancer
    corecore