76,680 research outputs found

    Phased array antenna beamforming using optical processor

    Get PDF
    The feasibility of optical processor based beamforming for microwave array antennas is investigated. The primary focus is on systems utilizing the 20/30 GHz communications band and a transmit configuration exclusively to serve this band. A mathematical model is developed for computation of candidate design configurations. The model is capable of determination of the necessary design parameters required for spatial aspects of the microwave 'footprint' (beam) formation. Computed example beams transmitted from geosynchronous orbit are presented to demonstrate network capabilities. The effect of the processor on the output microwave signal to noise quality at the antenna interface is also considered

    Antenna beamforming using optical processing

    Get PDF
    This work concerns itself with the analytical investigation into the feasibility of optical processor based beamforming for microwave array antennas. The primary focus is on systems utilizing the 20 and 30 GHz communications band and a transmit configuration exclusively to serve this band. A mathematical model is developed for computation of candidate design configurations. The model is capable of determination of the necessary design parameters required for both spatial aspects of the microwave footprint (beam) formation as well as transmitted signal quality. Computed example beams transmitted from geosynchronous orbit are presented to demonstrate network capabilities. A comprehensive device/component survey is also conducted in parallel to determine the feasibility of breadboarding a transmit processor. Recommendations are made for the configuration of such a processor and the components which would comprise such a network

    Mediating exchange bias by Verwey transition in CoO/Fe3O4 thin film

    Full text link
    We report the tunability of the exchange bias effect by the first-order metal-insulator transition (known as the Verwey transition) of Fe3O4 in CoO (5 nm)/Fe3O4 (40 nm)/MgO (001) thin film. In the vicinity of the Verwey transition, the exchange bias field is substantially enhanced because of a sharp increase in magnetocrystalline anisotropy constant from high-temperature cubic to lowtemperature monoclinic structure. Moreover, with respect to the Fe3O4 (40 nm)/MgO (001) thin film, the coercivity field of the CoO (5 nm)/Fe3O4 (40 nm)/MgO (001) bilayer is greatly increased for all the temperature range, which would be due to the coupling between Co spins and Fe spins across the interface

    Quantification of Macroscopic Quantum Superpositions within Phase Space

    Full text link
    Based on phase-space structures of quantum states, we propose a novel measure to quantify macroscopic quantum superpositions. Our measure simultaneously quantifies two different kinds of essential information for a given quantum state in a harmonious manner: the degree of quantum coherence and the effective size of the physical system that involves the superposition. It enjoys remarkably good analytical and algebraic properties. It turns out to be the most general and inclusive measure ever proposed that it can be applied to any types of multipartite states and mixed states represented in phase space.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let
    • …
    corecore