724 research outputs found
A Novel Watermarking Technique for Tampering Detection in Digital Images
A novel fragile watermarking technique is proposed for hiding logo information into an image by tuning block pixels based on a bitmap parity checking approach. A secure key and a random number generator are used to hide the logo information in a secret, undetectable, and unambiguous way. The characteristics of the mean gray value and the bitmap in a block are exploited for performing the embedding work efficiently and for hiding a logo into an image imperceptibly. The logo can be extracted without referencing the original image. The proposed method is useful for authentication of original digital products. The extracted logo not only can be used to identify tampered locations in digital images but also can resist JPEG compression to a certain degree. Good experimental results have been conducted and resulting images show the feasibility and effectiveness of the proposed method
Insights into the binding specificity and catalytic mechanism ofN-acetylhexosamine 1-phosphate kinases through multiple reaction complexes
Utilization of N-acetylhexosamine in bifidobacteria requires the specific lacto-N-biose/galacto-N-biose pathway, a pathway differing from the Leloir pathway while establishing symbiosis between humans and bifidobacteria. The gene lnpB in the pathway encodes a novel hexosamine kinase NahK, which catalyzes the formation of N-acetylhexosamine 1-phosphate (GlcNAc-1P/GalNAc-1P). In this report, seven three-dimensional structures of NahK in complex with GlcNAc, GalNAc, GlcNAc-1P, GlcNAc/AMPPNP and GlcNAc-1P/ADP from both Bifidobacterium longum (JCM1217) and B. infantis (ATCC15697) were solved at resolutions of 1.5-2.2 Å. NahK is a monomer in solution, and its polypeptide folds in a crescent-like architecture subdivided into two domains by a deep cleft. The NahK structures presented here represent the first multiple reaction complexes of the enzyme. This structural information reveals the molecular basis for the recognition of the given substrates and products, GlcNAc/GalNAc, GlcNAc-1P/GalNAc-1P, ATP/ADP and Mg(2+), and provides insights into the catalytic mechanism, enabling NahK and mutants thereof to form a choice of biocatalysts for enzymatic and chemoenzymatic synthesis of carbohydrates
Interleaved EPI based fMRI improved by multiplexed sensitivity encoding (MUSE) and simultaneous multi-band imaging
© 2014 Chang et al. Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.published_or_final_versio
Procalcitonin as a marker of bacterial infection in the emergency department: an observational study
INTRODUCTION: Procalcitonin (PCT) has been proposed as a marker of infection in critically ill patients; its level is related to the severity of infection. We evaluated the value of PCT as a marker of bacterial infection for emergency department patients. METHODS: This prospective observational study consecutively enrolled 120 adult atraumatic patients admitted through the emergency department of a 3000-bed tertiary university hospital in May 2001. Fifty-eight patients were infected and 49 patients were not infected. The white blood cell counts, the serum C-reactive protein (CRP) level (mg/l), and the PCT level (ng/ml) were compared between the infected and noninfected groups of patients. RESULTS: A white blood cell count >12,000/mm(3 )or <4000/mm(3 )was present in 36.2% of the infected patients and in 18.4% of the noninfected patients. The best cut-off serum levels for PCT and CRP, identified using the Youden's Index, were 0.6 ng/ml and 60 mg/l, respectively. Compared with CRP, PCT had a comparable sensitivity (69.5% versus 67.2%), a lower specificity (64.6% versus 93.9%), and a lower area under the receiver operating characteristic curve (0.689 versus 0.879). PCT levels, but not CRP levels, were significantly higher in bacteremic and septic shock patients. Multivariate logistic regression identified that a PCT level ≥ 2.6 ng/ml was independently associated with the development of septic shock (odds ratio, 38.3; 95% confidence interval, 5.6–263.5; P < 0.001). CONCLUSIONS: PCT is not a better marker of bacterial infection than CRP for adult emergency department patients, but it is a useful marker of the severity of infection
Hospital treatment, mortality and healthcare costs in relation to socioeconomic status among people with bipolar affective disorder
BACKGROUND: Evidence regarding the relationships between the socioeconomic status and long-term outcomes of individuals with bipolar affective disorder (BPD) is lacking. AIMS: We aimed to estimate the effects of baseline socioeconomic status on longitudinal outcomes. METHOD: A national cohort of adult participants with newly diagnosed BPD was identified in 2008. The effects of personal and household socioeconomic status were explored on outcomes of hospital treatment, mortality and healthcare costs, over a 3-year follow-up period (2008–2011). RESULTS: A total of 7987 participants were recruited. The relative risks of hospital treatment and mortality were found elevated for the ones from low-income households who also had higher healthcare costs. Low premium levels did not correlate with future healthcare costs. CONCLUSIONS: Socioeconomic deprivation is associated with poorer outcome and higher healthcare costs in BPD patients. Special care should be given to those with lower socioeconomic status to improve outcomes with potential benefits of cost savings in the following years. DECLARATION OF INTEREST: None. COPYRIGHT AND USAGE: © 2016 The Royal College of Psychiatrists. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence
On Connected Target Coverage for Wireless Heterogeneous Sensor Networks with Multiple Sensing Units
The paper considers the connected target coverage (CTC) problem in wireless heterogeneous sensor networks (WHSNs) with multiple sensing units, termed MU-CTC problem. MU-CTC problem can be reduced to a connected set cover problem and further formulated as an integer linear programming (ILP) problem. However, the ILP problem is an NP-complete problem. Therefore, two distributed heuristic schemes, REFS (remaining energy first scheme) and EEFS (energy efficiency first scheme), are proposed. In REFS, each sensor considers its remaining energy and its neighbors’ decisions to enable its sensing units and communication unit such that all targets can be covered for the required attributes and the sensed data can be delivered to the sink. The advantages of REFS are its simplicity and reduced communication overhead. However, to utilize sensors’ energy efficiently, EEFS is proposed. A sensor in EEFS considers its contribution to the coverage and the connectivity to make a better decision. To our best knowledge, this paper is the first to consider target coverage and connectivity jointly for WHSNs with multiple sensing units. Simulation results show that REFS and EEFS can both prolong the network lifetime effectively. EEFS outperforms REFS in network lifetime, but REFS is simpler
Prevention of Dental Damage and Improvement of Difficult Intubation Using a Paraglossal Technique With a Straight Miller Blade
Patients with diseased teeth, or those who are difficult to intubate, have a higher risk of dental injury during laryngoscopy. We report 3 cases of smooth endotracheal intubation using a paraglossal technique with a straight Miller blade in patients with poor dentition. Three patients with poor dentition were scheduled to undergo surgery under general anesthesia. All patients presented with extremely loose upper central incisors and had lost the other right upper teeth, while micrognathia and prominent, loose upper incisors were noted in 1 case. We elected to use a straight Miller blade using a paraglossal approach. A nasopharyngeal airway was inserted after induction of general anesthesia to facilitate mask ventilation and prevent air leakage from the mask. The Miller blade was then inserted from the right corner of the mouth, avoiding contact with the vulnerable incisors, and advanced along the groove between the tongue and tonsil. The endotracheal tube was subsequently smoothly inserted after obtaining a grade 1 Cormack and Lehane view without dental trauma in all 3 cases. Direct laryngoscopy using the paraglossal straight blade technique avoids dental damage in patients with mobile upper incisors and no right maxillary molars. It is a practical alternative method that differs from the traditional Macintosh laryngoscope in patients with a high risk of dental injury during the procedure. This technique, which provides an improved view of the larynx, might also be helpful with patients in whom intubation is difficult
Power-efficient memory bus encoding using stride-based stream reconstruction
With the rapid increase in the complexity of chips and the popularity of portable devices, the performance demand is not any more the only important constraint in the embedded system. In stead, energy consumption has become one of the main design issues for contemporary embedded systems, especially for I/O interface due to the high capacitance of bus transition. In this paper, we propose a bus encoding scheme, which may reduce transitions by reconstructing active address streams with variable cached strides. The key idea is to obtain the variable strides for dierent sets of active addressing streams such that the decoder reconstructs these interlaced streams with these strides. Instead of sending the full address, the encoder may only send partial ad- dress or stride by using either one-hot or binary-inversion encoding. To exploit the locality and dynamically adjust the value of stride of active address streams, we partially compare the previous addresses of existing streams with the current address. Hence, the data transmitted on the bus can be minimally encoded. Experiments with several MediaBench benchmarks show that the scheme can achieve an average of 60% reduction in bus switching activity.Facultad de Informátic
Characterization of transparent conductive delafossite-CuCr 1−x O 2 films
a b s t r a c t In this study, the CuCr 1−x O 2 films with x = 0.00-0.25 were prepared on a quartz substrate by sol-gel processing. The films were first deposited onto a quartz substrate by spin-coating. The specimens were annealed at 500 • C in air for 1 h and post-annealed in N 2 at 700 • C for 2 h. As the films were post-annealed in N 2 , a pure delafossite-CuCrO 2 phase appeared in the CuCr 1−x O 2 films below x = 0.20. However, an additional CuO phase appeared at x = 0.25. The pure delafossite-CuCrO 2 phase can exist within x ≤ 0.20 in CuCr 1−x O 2 films. The binding energies of Cu-2p 3/2 and Cr-2p 3/2 in the CuCr 1−x O 2 films with the pure delafossite-CuCrO 2 phase were 932.1 ± 0.2 eV and 576.0 ± 0.2 eV, respectively. The surface exhibited elongated grain features when the pure delafossite-CuCrO 2 phase was present in the CuCr 1−x O 2 films. The maximum transmittance of the CuCr 1−x O 2 films with the pure delafossite-CuCrO 2 phase was approximately 80%, which moved toward the visible region with the increasing x-value. The film absorption edges were observed at 400 nm, which were sharper with the increasing x-value. The optical bandgaps of CuCr 1−x O 2 films with the pure delafossite-CuCrO 2 phase were approximately 3.0 eV. The electrical conductivity of CuCr 1−x O 2 films with the pure delafossite-CuCrO 2 phase was 1.1 × 10 −3 S cm −1 (x = 0.00), and increased to 0.16 S cm −1 (x = 0.20). The corresponding carrier concentration of CuCr 1−x O 2 films with the pure delafossite-CuCrO 2 phase was 2.8 × 10 14 cm −3 (x = 0.00), and markedly increased to 1.8 × 10 16 cm −3 (x = 0.20). The Cr-deficient condition in delafossite-CuCrO 2 films enhances film electrical conductivity and carrier concentration, but retains the film's high-visible transparency
- …