240 research outputs found

    Aesthetic Highlight Detection in Movies Based on Synchronization of Spectators’ Reactions.

    Get PDF
    Detection of aesthetic highlights is a challenge for understanding the affective processes taking place during movie watching. In this paper we study spectators’ responses to movie aesthetic stimuli in a social context. Moreover, we look for uncovering the emotional component of aesthetic highlights in movies. Our assumption is that synchronized spectators’ physiological and behavioral reactions occur during these highlights because: (i) aesthetic choices of filmmakers are made to elicit specific emotional reactions (e.g. special effects, empathy and compassion toward a character, etc.) and (ii) watching a movie together causes spectators’ affective reactions to be synchronized through emotional contagion. We compare different approaches to estimation of synchronization among multiple spectators’ signals, such as pairwise, group and overall synchronization measures to detect aesthetic highlights in movies. The results show that the unsupervised architecture relying on synchronization measures is able to capture different properties of spectators’ synchronization and detect aesthetic highlights based on both spectators’ electrodermal and acceleration signals. We discover that pairwise synchronization measures perform the most accurately independently of the category of the highlights and movie genres. Moreover, we observe that electrodermal signals have more discriminative power than acceleration signals for highlight detection

    The Pulsed Neutron Beam EDM Experiment

    Full text link
    We report on the Beam EDM experiment, which aims to employ a pulsed cold neutron beam to search for an electric dipole moment instead of the established use of storable ultracold neutrons. We present a brief overview of the basic measurement concept and the current status of our proof-of-principle Ramsey apparatus

    Emotion Assessment From Physiological Signals for Adaptation of Game Difficulty

    Full text link

    Training functional mobility using a dynamic virtual reality obstacle course

    Get PDF
    Falling poses a significant risk of injury for older adults, thus decreasing quality of life. Major risk factors for falling include decrements in gait and balance, and adverse patient-reported health and well-being. Virtual Reality (VR) can be a cost-effective, resource-efficient, and highly engaging training tool, and previous research has utilized VR to reduce fall-risk factors in a variety of populations with aging and pathology. However, there are barriers to implementing VR as a training tool to improve functional mobility in older adults that include the manner in which healthy older adults perform in VR relative to younger adults, the effect of extended duration training, and the relation of fall-risk clinical metrics to performance in VR. The purpose of this dissertation is threefold: (1) to compare performance between older and younger adults in VR and in real-world gait and balance tests as a result of a single bout of VR training; (2) to compare performance in VR and gait and balance within younger adults as a result of extended training duration; and (3) to evaluate clinical tests as prerequisite measures for performance within the VR environment. Thirty-five healthy adults participated in this study and were placed into either the older adult training group (n=8; 67.0±4.4yrs), younger training (n=13; 22.1±2.5yrs), or younger control (n=13; 21.7±1.0yrs). All participants completed an online patient-reported survey of balance confidence and health and well-being, as well as a pre-test of clinical assessments and walking and balance tests. The training groups then completed 15 trials of a VR obstacle course, while the controls walked overground for 15 minutes. The VR obstacle course included a series of gait and dynamic balance tasks, such as stepping on irregularly placed virtual stepping stones and walking a virtual balance beam. All participants repeated the walking and balance tests at post-test. The younger training group also completed 3 weeks of training in the same VR obstacle course and a second post-test. Analyses of variance were completed to determine the extent to which participants improved within VR and the walking and balance tests both as a result of a single bout of training, and for the younger adults – three weeks of extended training. Multiple regressions were run to determine the extent to which patient-reports and clinical assessments may predict performance within VR. The results reported in Manuscript I show that although younger adults completed the VR course quicker, their learning rate was not different from older adults; and as a result of extended training, younger adults continued to improve their time to complete the course. For gait and balance tests, age related differences were observed. Both groups showed better performance on some post-tests, indicating that VR training may have had a positive effect on neuromotor control. The results reported in Manuscript II suggest the RAND-1 pain subscale and simple reaction time (SRT) may predict time to complete the VR course, and SRT and BBS Q14 may additionally predict obstacle contact. These data suggest a VR obstacle course may be effective in improving gait and balance in both younger and older adults. It is recommended that future work enroll older adults in the extended training portion of the study and to increase the VR obstacle course difficulty when benchmarks are met

    Virtual obstacle crossing and the clinical implications for rehabilitation

    Get PDF
    Fall risk is a concern for a variety of clinical populations, especially in lower-limb amputees. The risk of falling during walking is increased by an individual with pathology’s diminished ability for obstacle negotiation. Virtual obstacle crossing environments offer a rehabilitation technique that is space and material efficient and may enhance obstacle crossing skill acquisition and retention though the use of task specificity, repetition, and feedback; while presenting an engaging and motivating challenge for participants. Current literature has not determined the response of an individual to virtual obstacle crossing in comparison to real environment over-ground obstacle crossing, nor whether aging influences this behavior. In a first step to determine the clinical viability of a virtual reality obstacle crossing environment, this task was tested using healthy able-bodied individuals (20 younger adults and 20 older adults) to determine an individual’s expected crossing behavior during a single session of training. The purpose of this study was to (1) determine the biomechanical obstacle-crossing behavior of an able-bodied individual within a virtual environment, (2) determine if a learning effect exists with virtual obstacle crossing, and (3) determine if the learning effect will transfer to over-ground obstacle crossing and create performance changes. Dependent variables measured were foot placement before and after the obstacles for the both the lead and trail limbs, toe/heel clearance for both limbs in the vertical and radial directions, and the peak toe and heel elevation. The hypotheses were: (1) a training effect would be observed at the end of the virtual obstacle crossing training in the form of the adoption of a safer obstacle crossing strategy in the virtual environment, (2) a safer obstacle crossing strategy in the real environment would be adopted in the post-test relative to the pre-test, and (3) the performance changes in the virtual environment would be correlated with the performance changes in the real environment, suggesting an association between motor learning in a virtual environment and transfer to a real environment task. It was also postulated that each hypothesized finding would be affected by age, with older adults showing less learning and transfer (albeit still significant) compared to the younger adults. Results indicate that participants learned to cross the virtual obstacle more safely and that change in behavior was transfer to the real environment. Further, while both age groups showed transfer to the real environment task, they differed on which limb their transfer effects applied to. The data suggest it is plausible to use virtual reality training as a way to enhance gait characteristics in the context of obstacle avoidance, potentially a leading to a novel way to reduce fall risk

    Recognizing Induced Emotions of Movie Audiences: Are Induced and Perceived Emotions the Same?

    Get PDF
    Predicting the emotional response of movie audi- ences to affective movie content is a challenging task in affective computing. Previous work has focused on using audiovisual movie content to predict movie induced emotions. However, the relationship between the audience’s perceptions of the affective movie content (perceived emotions) and the emotions evoked in the audience (induced emotions) remains unexplored. In this work, we address the relationship between perceived and in- duced emotions in movies, and identify features and modelling approaches effective for predicting movie induced emotions. First, we extend the LIRIS-ACCEDE database by annotating perceived emotions in a crowd-sourced manner, and find that perceived and induced emotions are not always consistent. Second, we show that dialogue events and aesthetic highlights are effective predictors of movie induced emotions. In addition to movie based features, we also study physiological and be- havioural measurements of audiences. Our experiments show that induced emotion recognition can benefit from including temporal context and from including multimodal information. Our study bridges the gap between affective content analysis and induced emotion prediction

    Hadron Coolers at CERN

    Get PDF
    To provide efficient deceleration and to produce antiproton beam with the required characteristics two different cooler systems (stochastic and electron) are used in operation on the AD (Antiproton Decelerator) machine. In a near future, an electron cooling system will be used in LEIR (Low Energy Ion Ring) to accumulate ions for LHC. This system will be used for a fast ion beam cooling and stacking. These cooling systems are described

    Genomic Reconstruction of an Uncultured Hydrothermal Vent Gammaproteobacterial Methanotroph (Family Methylothermaceae) Indicates Multiple Adaptations to Oxygen Limitation

    Get PDF
    Hydrothermal vents are an important contributor to marine biogeochemistry, producing large volumes of reduced fluids, gasses, and metals and housing unique, productive microbial and animal communities fueled by chemosynthesis. Methane is a common constituent of hydrothermal vent fluid and is frequently consumed at vent sites by methanotrophic bacteria that serve to control escape of this greenhouse gas into the atmosphere. Despite their ecological and geochemical importance, little is known about the ecophysiology of uncultured hydrothermal vent-associated methanotrophic bacteria. Using metagenomic binning techniques, we recovered and analyzed a near-complete genome from a novel gammaproteobacterial methanotroph (B42) associated with a white smoker chimney in the Southern Lau basin. B42 was the dominant methanotroph in the community, at ∼80x coverage, with only four others detected in the metagenome, all on low coverage contigs (7x–12x). Phylogenetic placement of B42 showed it is a member of the Methylothermaceae, a family currently represented by only one sequenced genome. Metabolic inferences based on the presence of known pathways in the genome showed that B42 possesses a branched respiratory chain with A- and B-family heme copper oxidases, cytochrome bd oxidase and a partial denitrification pathway. These genes could allow B42 to respire over a wide range of oxygen concentrations within the highly dynamic vent environment. Phylogenies of the denitrification genes revealed they are the result of separate horizontal gene transfer from other Proteobacteria and suggest that denitrification is a selective advantage in conditions where extremely low oxygen concentrations require all oxygen to be used for methane activation

    Neuromotor Changes in Participants with a Concussion History can be Detected with a Custom Smartphone App

    Get PDF
    Neuromotor dysfunction after a concussion is common, but balance tests used to assess neuromotor dysfunction are typically subjective. Current objective balance tests are either cost- or space-prohibitive, or utilize a static balance protocol, which may mask neuromotor dysfunction due to the simplicity of the task. To address this gap, our team developed an Android-based smartphone app (portable and cost-effective) that uses the sensors in the device (objective) to record movement profiles during a stepping-in-place task (dynamic movement). The purpose of this study was to examine the extent to which our custom smartphone app and protocol could discriminate neuromotor behavior between concussed and non-concussed participants. Data were collected at two university laboratories and two military sites. Participants included civilians and Service Members (N = 216) with and without a clinically diagnosed concussion. Kinematic and variability metrics were derived from a thigh angle time series while the participants completed a series of stepping-in-place tasks in three conditions: eyes open, eyes closed, and head shake. We observed that the standard deviation of the mean maximum angular velocity of the thigh was higher in the participants with a concussion history in the eyes closed and head shake conditions of the stepping-in-place task. Consistent with the optimal movement variability hypothesis, we showed that increased movement variability occurs in participants with a concussion history, for which our smartphone app and protocol were sensitive enough to capture
    • …
    corecore