969 research outputs found

    Enhanced synchronization in an array of spin torque nano oscillators in the presence of oscillating external magnetic field

    Full text link
    We demonstrate that the synchronization of an array of electrically coupled spin torque nano-oscillators (STNO) modelled by Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation can be enhanced appreciably in the presence of a common external microwave magnetic field. The applied microwave magnetic field stabilizes and enhances the regions of synchronization in the parameter space of our analysis, where the oscillators are exhibiting synchronized oscillations thereby emitting improved microwave power. To characterize the synchronized oscillations we have calculated the locking range in the domain of external source frequency.Comment: Accepted for publication in Europhysics Letters (EPL

    EDIBLE SEEDS MEDICINAL VALUE, THERAPEUTIC APPLICATIONS AND FUNCTIONAL PROPERTIES-A REVIEW

    Get PDF
    India has a rich source of tropical fruits containing edible seeds such as chia, hemp, sesame, pumkin, sunflower, mustard, nigella, guava, papaya, mangosteen, honeydew, pomegranate, fennel, fenugreek, cumin, sweet orange, cucumber, jackfruit, mango, melons, avocado and many more. These products such as the seed kernel, which constitutes about 10–35% of the weight, offer high nutritional value and therapeutic applications. This article explores the nutritional, medicinal, therapeutic applications, functional properties and bioactive constituents of the seeds of some fruits, which are analyzed for their functions and applications as sources of food value and bioactive phytochemical constituents. The seeds contain essential bioactive components such as alkaloids, carotenoids, flavonoids, glycosides, saponins, terpenoids, tannins, steroids and polyphenolic compounds and that exhibit excellent anti-inflammatory, antioxidant properties, anticancer, anti-diabetic, anti-hyperlipidemic, anti-obesity, neurological disorders, cardiovascular, skin diseases and chronic diseases. They have remarkable physicochemical properties and a high content of carbohydrates, fats, proteins, vitamins, and minerals. However extensive research activities can be carried out to determine the efficacy of the nutritional and bioactive components in different seed types, the bioavailability and potency. Extensive research with the seed parts can be investigated to identify the medicinal and functional potentials of these fruit seeds. This review gives an overview on the therapeutic applications and functional properties of seeds present in fruits, vegetables and medicinal plants. The medicinal and nutritional value, phytochemical composition, bioactive phytoconstituents, therapeutic activity, therapeutic applications and uses, proximate analysis, functional properties, analytical methods, spectroscopic methods and human clinical trials of some edible seeds are discussed in this review

    Unilateral variation in branching pattern of Right Axillary Artery - A Case Report

    Get PDF
    The Axillary artery is the continuation of the subclavian artery and is a major artery of the upper limb. During the routine dissection for Undergraduate Ayurvedic Medical Students of Sharada Ayurvedic Medical College, Yadgir, Karnataka, India, in the Department of Anatomy, we come across a variation in branching pattern of second and third part of right axillary artery in male cadaver approximately 55 years of age. The first part of axillary artery was found to be normal. In the second part of axillary artery we observed two branches, first one is thoracoacromial artery arose as usual second branch given common trunk which is further divided into lateral thoracic artery and subscapular artery. Even third part of axillary artery gave one common trunk that terminated by bifurcating into Anterior Circumflex Humeral Artery and Posterior Circumflex Humeral Artery

    POTENTIAL PHYTOCONSTITUENTS FROM NATURAL PRODUCTS FOR COMBATING AGAINST CORONAVIRUS DISEASE-19 (SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS‐2) - A REVIEW

    Get PDF
    Coronavirus called as coronavirus diseases (COVID)-19 (severe acute respiratory syndrome coronavirus [SARS‐CoV]‐2) is a viral infection which is spreading to a great extent and affecting many people worldwide, many developed and developing countries are severely affected by the virus. The World Health Organization (WHO) is taking serious preventive measures to stop this viral infection worldwide. The coronavirus is a big threat to human beings and controlling the emerging viral infections is a global concern. Antiviral drug such as Remdesivir has been approved by the FDA, but combating against these viral infections is a great challenge to scientists and researchers with the available few antiviral drugs due to severe side effects and toxicity. Many drugs such as hydroxy chloroquin, Remdesivir, and vaccines have been recommended for combating this virus. Few Polyherbal formulations and Ayurvedic formulations containing antiviral phytoconstituents have been recommended to boost the immunity. Some drugs and phytoconstituents are under different phases of human clinical trials. The currently available synthetic drugs and vaccines for the treatment of viral infections have severe side effects. Medicinal plants play a critical role in treating viral infections by developing immunity against viral diseases. Some medicinal plants which were used as antipyretic, analgesic, and anti-inflammatory activity helped in treating various diseases and viral infections. Many plants contain flavonoids such as quercetin, luteolin, apigenin, and polyphenols such as thymoquinone, phytosteroids such as cucurbitacin and others which may likely to act as antioxidants and immunomodulatory that can fight against COVID-19. The current review provides information on phytochemical constituents present in medicinal plants, their mechanism of action, in silico molecular docking studies and human clinical trials to treat viral disorders

    Influence of dissipation on extreme oscillations of a forced anharmonic oscillator

    Full text link
    Dynamics of a periodically forced anharmonic oscillator (AO) with cubic nonlinearity, linear damping, and nonlinear damping, is studied. To begin with, the authors examine the dynamics of an AO. Due to this symmetric nature, the system has two neutrally stable elliptic equilibrium points in positive and negative potential-wells. Hence, the unforced system can exhibit both single-well and double-well periodic oscillations depending on the initial conditions. Next, the authors include nonlinear damping into the system. Then, the symmetry of the system is broken instantly and the stability of the two elliptic points is altered to result in stable focus and unstable focus in the positive and negative potential-wells, respectively. Consequently, the system is dual-natured and is either non-dissipative or dissipative, depending on location in the phase space. Furthermore, when one includes a periodic external forcing with suitable parameter values into the nonlinearly damped AO system and starts to increase the damping strength, the symmetry of the system is not broken right away, but it occurs after the damping reaches a threshold value. As a result, the system undergoes a transition from double-well chaotic oscillations to single-well chaos mediated through extreme events (EEs). Furthermore, it is found that the large-amplitude oscillations developed in the system are completely eliminated if one incorporates linear damping into the system. The numerically calculated results are in good agreement with the theoretically obtained results on the basis of Melnikov's function. Further, it is demonstrated that when one includes linear damping into the system, this system has a dissipative nature throughout the entire phase space of the system. This is believed to be the key to the elimination of EEs.Comment: 15 pages, 9 figures. Accepted for publications in International Journal of Non-Linear Mechanic

    Synchronization of an array of spin torque nano oscillators in periodic applied external magnetic field

    Full text link
    Considering an array of spin torque transfer nano oscillators (STNOs), we have investigated the synchronization property of the system under the action of a common periodically driven applied external magnetic field by numerically analyzing the underlying system of Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equations for the macro-spin variables. We find the novel result that the applied external magnetic field can act as a medium to induce synchronization of periodic oscillations, both in-phase and anti-phase, even without coupling through spin current, thereby leading to the exciting possibility of enhancement of microwave power in a straightforward way.Comment: 6 pages, 8 figures, accepted for publication in Europhysics Letter

    FORMULATION AND OPTIMIZATION AND IN VITRO CHARACTERIZATION OF OLANZAPINE LIPOSOME

    Get PDF
    Objective: Olanzapine (OZ) is a thioeno benzodiazepine class second-generation or atypical antipsychotic that selectively binds to central dopamine D2 and serotonin (5-HT2c) receptors used for the treatment of schizophrenia and bipolar disorder. The present paper is aimed at developing an optimized liposome-loaded OZ as an approach for brain targeting through the nasal route for effective therapeutic management of schizophrenia. Methods: The OZ liposomes were prepared by the thin-film hydration method. Various independent variable such as phospholipid, cholesterol and sonication time was optimized by using Design-Expert® Software to obtain the dependent variables of entrapment efficiency, vesicle size and zeta potential. The optimized formulation was predicted based on the response obtained by the point prediction method. Results: The entrapment efficiency of the formulation was range between 72.9 and 85.1 %. The average particle size of all the 15 experimental runs lies between the minimum and maximum values of the size 258.33 to 325.32 nm, respectively. The zeta potential ranges from-27.53 to-11.46 mV. The optimized formulation for characterized for its morphology by Transmission Electron Microscopy (TEM). In vitro release studies of OZ-loaded liposomal formulation was carried by dialysis sac method using pH 7.4 phosphate buffer (PBS) as a medium. The maximum release was found to be 98.43±1.2 % up to 24 h. The R2 zero-order kinetics and Korsmeyer-Peppas model was found to be 0.9919 and 0.9664, respectively. The zero-order shows the best-fit model with a highest R2 value exhibiting better correlation and the ‘n’ value was also found to be 0.85; indicating both diffusion-controlled and swelling-controlled drug release that is anomalous transport. Conclusion: The results, clearly states that the prepared formulations justify the parameters and OZ might be a suitable candidate to target the brain through nasal delivery

    Growth Stress Induced Tunability of Dielectric Constant in Thin Films

    Full text link
    It is demonstrated here that growth stress has a substantial effect on the dielectric constant of zirconia thin films. The correct combination of parameters - phase, texture and stress - is shown to yield films with high dielectric constant and best reported equivalent oxide thickness of 0.8 nm. The stress effect on dielectric constant is twofold, firstly, by the effect on phase transitions and secondly by the effect on interatomic distances. We discuss and explain the physical mechanisms involved in the interplay between the stress, phase changes and the dielectric constant in detail.Comment: 11 pages, 5 figure
    corecore