3 research outputs found

    Removal of gutta-percha/zinc-oxide-eugenol sealer or gutta-percha/epoxy resin sealer from severely curved canals: An in vitro study

    Get PDF
    The aim of this study was to compare the cleanliness of root canal walls after retreatment using two rotary retreatment files to hand instruments in severely curved canals obturated with gutta-percha and two different sealers. Single rooted mandibular premolars (n = 90) with root curvatures were instrumented and obturated with gutta-percha and an epoxy resin (Group 1, n = 45) or zinc oxide eugenol sealer (Group 2, n = 45). Following retreatment of the specimens (n = 15 ProTaper Universal Retreatment Files (Subgroup B) or R-Endo retreatment files (Subgroup C) after 1 month, split specimens were examined under a stereomicroscope and the percentage of remaining root filling material was statistically compared using one way ANOVA with Bonferroni adjustment for multiple comparisons (P = 0.05). The R-Endo system performed significantly better than the other two file systems (P < 0.05). None of the systems used in this study cleaned root canals thoroughly. The R-Endo system did provide cleaner walls when compared to the other instruments used. The type of root filling materials had an impact on the outcomes with all techniques. Copyright © 2011 Santhoshini Reddy et al.Link_to_subscribed_fulltex

    ZrO2/MoS2 Heterojunction Photocatalysts for Efficient Photocatalytic Degradation of Methyl Orange

    No full text
    We report a simple solution-chemistry approach for the synthesis of ZrO2/MoS2 hybrid photocatalysts, which contain MoS2 as a cocatalyst. The material is usually obtained by a wet chemical method using ZrO(NO3)(2) or (NH4)(6)Mo7O24 center dot 4H(2)O and C8H6S as precursors. The structural features of obtained materials were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG-DTA), N-2 adsorption-desorption, and photoluminescence (PL). The influence on the photocatalytic activity of the MoS2 cocatalyst concentration with ZrO2 nanoparticles was studied. The MZr-2 hybrid sample had the highest photocatalytic activity for the degradation of methyl orange (MO), which was 8.45 times higher than that of pristine ZrO2 ascribed to high specific surface area and absorbance efficiency. Recycling experiments revealed that the reusability of the MZr-2 hybrid was due to the low photocorrosive effect and good catalytic stability. PL spectra confirmed the electronic interaction between ZrO2 and MoS2. The photoinduced electrons could be easily transferred from CB of ZrO2 to the MoS2 cocatalyst, which facilitate effective charge separation and enhanced the photocatalytic degradation in the UV region. A photocatalytic mechanism is proposed. It is believed that the ZrO2/MoS2 hybrid structure has promise as a photocatalyst with low cost and high efficiency for photoreactions.ope
    corecore