722 research outputs found
Convex hull method for the determination of vapour-liquid equilibria (VLE) phase diagrams for binary and ternary systems
Amieibibama Joseph wishes to thank Petroleum Technology Development Fund (PTDF) for their financial support which has made this research possible.Peer reviewedPostprin
Establishing gold standard approaches to rapid tranquillisation: a review and discussion of the evidence on the safety and efficacy of medications currently used
Background: Rapid tranquillisation is used when control of agitation, aggression or excitement is required. Throughout the UK there is no consensus over the choice of drugs to be used as first line treatment. The NICE guideline on the management of violent behaviour involving psychiatric inpatients conducted a systematic examination of the literature relating to the effectiveness and safety of rapid tranquillisation (NICE, 2005). This paper presents the key findings from that review and key guideline recommendations generated, and discusses the implications for practice of more recent research and information.
Aims: To examine the evidence on the efficacy and safety of medications used for rapid tranquillisation in inpatient psychiatric settings.
Method: Systematic review of current guidelines and phase III randomised, controlled trials of medication used for rapid tranquillisation. Formal consensus methods were used to generate clinically relevant recommendations to support safe and effective prescribing of rapid tranquillisation in the development of a NICE guideline.
Findings: There is a lack of high quality clinical trial evidence in the UK and therefore a ‘gold standard’ medication regime for rapid tranquillisation has not been established.
Rapid tranquillisation and clinical practice: The NICE guideline produced 35 recommendations on rapid tranquillisation practice for the UK, with the primary aim of calming the service user to enable the use of psychosocial techniques.
Conclusions and implications for clinical practice: Further UK specific research is urgently needed that provides the clinician with a hierarchy of options for the clinical practice of rapid tranquillisation
IOC contributions to international, interdisciplinary open data sharing
Author Posting. © Oceanography Society, 2010. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 23, no. 3 (2010): 140-151, doi: 10.5670/oceanog.2010.29Over the last 50 years, the Intergovernmental
Oceanographic Commission
(IOC) has had a profound influence
upon the willingness of United Nations
Member States to share and provide
access to their international and interdisciplinary
oceanographic data. (For an
early history and review of IOC achievements,
see Roll, 1979.) Ocean science
over the last half century has been transformed
from a predominately modular,
single-disciplinary, and individualistic
science into a national and multinational
interdisciplinary enterprise (Briscoe,
2008; Powell, 2008). The transformation
began slowly, but as computing
power increased, the pace accelerated,
and along with these alterations came
shifts in cultural practices regarding the
sharing of data
Manipulating Gibberellin Control Over Growth and Fertility as a Possible Target for Managing Wild Radish Weed Populations in Cropping Systems
Wild radish is a major weed of Australian cereal crops. A rapid establishment, fast growth, and abundant seed production are fundamental to its success as an invasive species. Wild radish has developed resistance to a number of commonly used herbicides increasing the problem. New innovative approaches are needed to control wild radish populations. Here we explore the possibility of pursuing gibberellin (GA) biosynthesis as a novel molecular target for controlling wild radish, and in doing so contribute new insights into GA biology. By characterizing ga 3-oxidase (ga3ox) mutants in Arabidopsis, a close taxonomic relative to wild radish, we showed that even mild GA deficiencies cause considerable reductions in growth and fecundity. This includes an explicit requirement for GA biosynthesis in successful female fertility. Similar defects were reproducible in wild radish via chemical inhibition of GA biosynthesis, confirming GA action as a possible new target for controlling wild radish populations. Two possible targeting approaches are considered; the first would involve developing a species-specific inhibitor that selectively inhibits GA production in wild radish over cereal crops. The second, involves making crop species insensitive to GA repression, allowing the use of existing broad spectrum GA inhibitors to control wild radish populations. Toward the first concept, we cloned and characterized two wild radish GA3OX genes, identifying protein differences that appear sufficient for selective inhibition of dicot over monocot GA3OX activity. We developed a novel yeast-based approach to assay GA3OX activity as part of the molecular characterization, which could be useful for future screening of inhibitory compounds. For the second approach, we demonstrated that a subset of GA associated sln1/Rht-1 overgrowth mutants, recently generated in cereals, are insensitive to GA reductions brought on by the general GA biosynthesis inhibitor, paclobutrazol. The location of these mutations within sln1/Rht-1, offers additional insight into the functional domains of these important GA signaling proteins. Our early assessment suggests that targeting the GA pathway could be a viable inclusion into wild radish management programs that warrants further investigation. In drawing this conclusion, we provided new insights into GA regulated reproductive development and molecular characteristics of GA metabolic and signaling proteins.The work was supported by the CRC for Australian Weed Management and the Australian Research Council Centre of Excellence for Translational Photosynthesis (CE140100015)
An Assessment of Geophysical Survey Techniques for Characterising the Subsurface Around Glacier Margins, and Recommendations for Future Applications
Geophysical surveys provide an efficient and non-invasive means of studying subsurface conditions in numerous sedimentary settings. In this study, we explore the application of three geophysical methods to a proglacial environment, namely ground penetrating radar (GPR), seismic refraction and multi-channel analysis of surface waves (MASW). We apply these geophysical methods to three glacial landforms with contrasting morphologies and sedimentary characteristics, and we use the various responses to assess the applicability and limitations of each method for these proglacial targets. Our analysis shows that GPR and seismic (refraction and MASW) techniques can provide spatially extensive information on the internal architecture and composition of moraines, but careful survey designs are required to optimise data quality in these geologically complex environments. Based on our findings, we define a number of recommendations and a potential workflow to guide future geophysical investigations in analogous settings. We recommend the initial use of GPR in future studies of proglacial environments to inform (a) seismic survey design and (b) the selection of seismic interpretation techniques. We show the benefits of using multiple GPR antenna frequencies (e.g., 25 and 100 MHz) to provide decimetre scale imaging in the near surface (e.g., < 15 m) while also enabling signal penetration to targets at up to ∼40 m depth (e.g., bedrock). This strategy helps to circumvent changes in radar signal penetration resulting from variations in substrate conductivity or abundant scatterers. Our study also demonstrates the importance of combining multiple geophysical methods together with ground-truthing through sedimentological observations to reduce ambiguity in interpretations. Implementing our recommendations will improve geophysical survey practice in the field of glacial geology and allow geophysical methods to play an increasing role in the interpretation of glacial landforms and sediments.publishedVersio
Isomerization dynamics of a buckled nanobeam
We analyze the dynamics of a model of a nanobeam under compression. The model
is a two mode truncation of the Euler-Bernoulli beam equation subject to
compressive stress. We consider parameter regimes where the first mode is
unstable and the second mode can be either stable or unstable, and the
remaining modes (neglected) are always stable. Material parameters used
correspond to silicon. The two mode model Hamiltonian is the sum of a
(diagonal) kinetic energy term and a potential energy term. The form of the
potential energy function suggests an analogy with isomerisation reactions in
chemistry. We therefore study the dynamics of the buckled beam using the
conceptual framework established for the theory of isomerisation reactions.
When the second mode is stable the potential energy surface has an index one
saddle and when the second mode is unstable the potential energy surface has an
index two saddle and two index one saddles. Symmetry of the system allows us to
construct a phase space dividing surface between the two "isomers" (buckled
states). The energy range is sufficiently wide that we can treat the effects of
the index one and index two saddles in a unified fashion. We have computed
reactive fluxes, mean gap times and reactant phase space volumes for three
stress values at several different energies. In all cases the phase space
volume swept out by isomerizing trajectories is considerably less than the
reactant density of states, proving that the dynamics is highly nonergodic. The
associated gap time distributions consist of one or more `pulses' of
trajectories. Computation of the reactive flux correlation function shows no
sign of a plateau region; rather, the flux exhibits oscillatory decay,
indicating that, for the 2-mode model in the physical regime considered, a rate
constant for isomerization does not exist.Comment: 42 pages, 6 figure
QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion Quantum Monte Carlo
We review recent advances in the capabilities of the open source ab initio
Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for
greater efficiency and reproducibility. The auxiliary field QMC (AFQMC)
implementation has been greatly expanded to include k-point symmetries,
tensor-hypercontraction, and accelerated graphical processing unit (GPU)
support. These scaling and memory reductions greatly increase the number of
orbitals that can practically be included in AFQMC calculations, increasing
accuracy. Advances in real space methods include techniques for accurate
computation of band gaps and for systematically improving the nodal surface of
ground state wavefunctions. Results of these calculations can be used to
validate application of more approximate electronic structure methods including
GW and density functional based techniques. To provide an improved foundation
for these calculations we utilize a new set of correlation-consistent effective
core potentials (pseudopotentials) that are more accurate than previous sets;
these can also be applied in quantum-chemical and other many-body applications,
not only QMC. These advances increase the efficiency, accuracy, and range of
properties that can be studied in both molecules and materials with QMC and
QMCPACK
Recommended from our members
Bactobolin Resistance Is Conferred by Mutations in the L2 Ribosomal Protein
Burkholderia thailandensis produces a family of polyketide-peptide molecules called bactobolins, some of which are potent antibiotics. We found that growth of B. thailandensis at 30°C versus that at 37°C resulted in increased production of bactobolins. We purified the three most abundant bactobolins and determined their activities against a battery of bacteria and mouse fibroblasts. Two of the three compounds showed strong activities against both bacteria and fibroblasts. The third analog was much less potent in both assays. These results suggested that the target of bactobolins might be conserved across bacteria and mammalian cells. To learn about the mechanism of bactobolin activity, we isolated four spontaneous bactobolin-resistant Bacillus subtilis mutants. We used genomic sequencing technology to show that each of the four resistant variants had mutations in rplB, which codes for the 50S ribosome-associated L2 protein. Ectopic expression of a mutant rplB gene in wild-type B. subtilis conferred bactobolin resistance. Finally, the L2 mutations did not confer resistance to other antibiotics known to interfere with ribosome function. Our data indicate that bactobolins target the L2 protein or a nearby site and that this is not the target of other antibiotics. We presume that the mammalian target of bactobolins involves the eukaryotic homolog of L2 (L8e)
- …