24 research outputs found

    Ultraviolet-radiation-resistant isolates revealed cellulose-degrading species of Cellulosimicrobium cellulans (UVP1) and Bacillus pumilus (UVP4)

    Get PDF
    Among extremophiles, microorganisms resistant to ultraviolet radiation (UVR) have been known to produce a variety of metabolites (i.e., extremolytes). We hypothesized that natural microbial flora on elevated land (hills) would reveal a variety of UVR-resistant extremophiles and polyextremophiles with modulated proteins and enzymes that had biotechnological implications. Microorganisms Cellulosimicrobium cellulans UVP1 and Bacillus pumilus UVP4 were isolated and identified using 16S rRNA sequencing, and showed extreme UV resistance (1.03 x 106 and 1.71 x 105 similar to J/m2, respectively) from elevated land soil samples along with unique patterns of protein expression under UVR and non-UVR. A broad range of cellulolytic activity on carboxymethyl cellulose agar plates in C. cellulans UVP1 and B. pumilus UVP4 was revealed at varying pH, temperature, and inorganic salt concentration. Further, the microbial strain B. pumilus UVP4 showed the basic characteristics of a novel group: polyextremophiles with significance in bioenergy

    Unraveling the structure of sugarcane bagasse after soaking in concentrated aqueous ammonia (SCAA) and ethanol production by Scheffersomyces (Pichia) stipitis

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud Fuel ethanol production from sustainable and largely abundant agro-residues such as sugarcane bagasse (SB) provides long term, geopolitical and strategic benefits. Pretreatment of SB is an inevitable process for improved saccharification of cell wall carbohydrates. Recently, ammonium hydroxide-based pretreatment technologies have gained significance as an effective and economical pretreatment strategy. We hypothesized that soaking in concentrated aqueous ammonia-mediated thermochemical pretreatment (SCAA) would overcome the native recalcitrance of SB by enhancing cellulase accessibility of the embedded holocellulosic microfibrils.\ud \ud \ud \ud Results\ud In this study, we designed an experiment considering response surface methodology (Taguchi method, L8 orthogonal array) to optimize sugar recovery from ammonia pretreated sugarcane bagasse (SB) by using the method of soaking in concentrated aqueous ammonia (SCAA-SB). Three independent variables: ammonia concentration, temperature and time, were selected at two levels with center point. The ammonia pretreated bagasse (SCAA-SB) was enzymatically hydrolysed by commercial enzymes (Celluclast 1.5 L and Novozym 188) using 15 FPU/g dry biomass and 17.5 Units of β-glucosidase/g dry biomass at 50°C, 150 rpm for 96 h. A maximum of 28.43 g/l reducing sugars corresponding to 0.57 g sugars/g pretreated bagasse was obtained from the SCAA-SB derived using a 20% v/v ammonia solution, at 70°C for 24 h after enzymatic hydrolysis. Among the tested parameters, pretreatment time showed the maximum influence (p value, 0.053282) while ammonia concentration showed the least influence (p value, 0.612552) on sugar recovery. The changes in the ultra-structure and crystallinity of native SCAA-SB and enzymatically hydrolysed SB were observed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The enzymatic hydrolysates and solid SCAA-SB were subjected to ethanol fermentation under separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) by Scheffersomyces (Pichia) stipitis NRRL Y-7124 respectively. Higher ethanol production (10.31 g/l and yield, 0.387 g/g) was obtained through SSF than SHF (3.83 g/l and yield, 0.289 g/g).\ud \ud \ud \ud Conclusions\ud SCAA treatment showed marked lignin removal from SB thus improving the accessibility of cellulases towards holocellulose substrate as evidenced by efficient sugar release. The ultrastructure of SB after SCAA and enzymatic hydrolysis of holocellulose provided insights of the degradation process at the molecular level.Financial support provided by Bioenergy-Fundação de Amparo a Pesquisa do Estado de São Paulo (BIOEN/FAPESP-Project Numbers: 2008/57926-4, 2010/11258-0) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) is gratefully acknowledged. We thank Dr. Durval Rodrigues Jr. from Engineering School of Lorena, University of São Paulo, Dr. Igor Polikarpov from University of São Paulo -São Carlos for SEM and XRD analysis respectively. Authors also thank Dr. Eduardo R. de Azevedo and Mr. Oigres D. Bernardinelli from University of São Paulo -São Carlos for NMR analysis.Financial support provided by BioenergyFundação de Amparo a Pesquisa do Estado de São Paulo (BIOEN/FAPESPProject Numbers: 2008/579264, 2010/112580) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) is gratefully acknowledged. We thank Dr. Durval Rodrigues Jr. from Engineering School of Lorena, University of São Paulo, Dr. Igor Polikarpov from University of São Paulo São Carlos for SEM and XRD analysis respectively. Authors also thank Dr. Eduardo R. de Azevedo and Mr. Oigres D. Bernardinelli from University of São Paulo São Carlos for NMR analysis

    Environmental assessment of residues generated after consecutive acid-base pretreatment of sugarcane bagasse by advanced oxidative process

    Get PDF
    Abstract\ud \ud \ud \ud Background\ud Biofuels produced from sugarcane bagasse (SB) have shown promising results as a suitable alternative of gasoline. Biofuels provide unique, strategic, environmental and socio-economic benefits. However, production of biofuels from SB has negative impact on environment due to the use of harsh chemicals during pretreatment. Consecutive sulfuric acid-sodium hydroxide pretreatment of SB is an effective process which eventually ameliorates the accessibility of cellulase towards cellulose for the sugars production. Alkaline hydrolysate of SB is black liquor containing high amount of dissolved lignin.\ud \ud \ud \ud Results\ud This work evaluates the environmental impact of residues generated during the consecutive acid-base pretreatment of SB. Advanced oxidative process (AOP) was used based on photo-Fenton reaction mechanism (Fenton Reagent/UV). Experiments were performed in batch mode following factorial design L9 (Taguchi orthogonal array design of experiments), considering the three operation variables: temperature (°C), pH, Fenton Reagent (Fe2+/H2O2) + ultraviolet. Reduction of total phenolics (TP) and total organic carbon (TOC) were responsive variables. Among the tested conditions, experiment 7 (temperature, 35°C; pH, 2.5; Fenton reagent, 144 ml H2O2+153 ml Fe2+; UV, 16W) revealed the maximum reduction in TP (98.65%) and TOC (95.73%). Parameters such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), BOD/COD ratio, color intensity and turbidity also showed a significant change in AOP mediated lignin solution than the native alkaline hydrolysate.\ud \ud \ud \ud Conclusion\ud AOP based on Fenton Reagent/UV reaction mechanism showed efficient removal of TP and TOC from sugarcane bagasse alkaline hydrolysate (lignin solution). To the best of our knowledge, this is the first report on statistical optimization of the removal of TP and TOC from sugarcane bagasse alkaline hydrolysate employing Fenton reagent mediated AOP process.We are grateful to the FAPESP for providing the financial support under the thematic project -2008/57926-4 and 2010/08066-2

    Comparative highly efficient production of β-glucan by Lasiodiplodia theobromae CCT 3966 and its multiscale characterization

    Get PDF
    Lasiodiplodan, a (1→6)-β-d-glucan, is an exopolysaccharide with high commercial value and many applications in food, pharmaceuticals, and cosmetics. Current industrial production of β-glucans from crops is mostly by chemical routes generating hazardous and toxic waste. Therefore, alternative sustainable and eco-friendly pathways are highly desirable. Here, we have studied the lasiodiplodan production from sugarcane bagasse (SCB), a major lignocellulosic agricultural residue, by Lasiodiplodia theobromae CCT 3966. Lasiodiplodan accumulated on SCB hydrolysate (carbon source) supplemented with soybean bran or rice bran (nitrogen source) was 16.2 [6.8 × 103 Da] and 22.0 [7.6 × 103 Da] g/L, respectively. Lasiodiplodan showed high purity, low solubility, pseudoplastic behavior and was composed of glucose units. Moreover, the exopolysaccharides were substantially amorphous with moderate thermal stability and similar degradation temperatures. To our knowledge, this is the first report on the highest production of SCB-based lasiodiplodan to date. L. theobromae, as a microbial cell factory, demonstrated the commercial potential for the sustainable production of lasiodiplodan from renewable biomass feedstock

    Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production

    Get PDF
    Biodiesel is an eco-friendly, renewable, and potential liquid biofuel mitigating greenhouse gas emissions. Biodiesel has been produced initially from vegetable oils, non-edible oils, and waste oils. However, these feedstocks have several disadvantages such as requirement of land and labor and remain expensive. Similarly, in reference to waste oils, the feedstock content is succinct in supply and unable to meet the demand. Recent studies demonstrated utilization of lignocellulosic substrates for biodiesel production using oleaginous microorganisms. These microbes accumulate higher lipid content under stress conditions, whose lipid composition is similar to vegetable oils. In this paper, feedstocks used for biodiesel production such as vegetable oils, non-edible oils, oleaginous microalgae, fungi, yeast, and bacteria have been illustrated. Thereafter, steps enumerated in biodiesel production from lignocellulosic substrates through pretreatment, saccharification and oleaginous microbe-mediated fermentation, lipid extraction, transesterification, and purification of biodiesel are discussed. Besides, the importance of metabolic engineering in ensuring biofuels and biorefinery and a brief note on integration of liquid biofuels have been included that have significant importance in terms of circular economy aspects.Fil: Chintagunta, Anjani Devi. Vignan’s Foundation for Science, Technology and Research. Department of Biotechnology; IndiaFil: Zuccaro, Gaetano. Institut National de la Recherche Agronomique; Francia. Università degli Studi di Napoli Federico II; ItaliaFil: Kumar, Mahesh. Central Agricultural University; IndiaFil: Kumar, S. P. Jeevan. Indian Institute of Seed Science; India. Directorate of Floricultural Research; IndiaFil: Garlapati, Vijay Kumar. Jaypee University of Information Technology; IndiaFil: Postemsky, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Centro de Recursos Naturales Renovables de la Zona Semiárida. Universidad Nacional del Sur. Centro de Recursos Naturales Renovables de la Zona Semiárida; ArgentinaFil: Kumar, N. S. Sampath. Vignan’s Foundation for Science, Technology and Research. Department of Biotechnology; IndiaFil: Chandel, Anuj K.. Universidade de Sao Paulo; BrasilFil: Simal Gandara, Jesus. Universidad de Vigo; Españ

    Sustainable Degradation of Lignocellulosic Biomass - Techniques, Applications and Commercialization

    No full text
    This book provides important aspects of sustainable degradation of lignocellulosic biomass which has a pivotal role for the economic production of several value-added products and biofuels with safe environment. Different pretreatment techniques and enzymatic hydrolysis process along with the characterization of cell wall components have been discussed broadly. The following features of this book attribute its distinctiveness: This book comprehensively covers the improvement in methodologies for the biomass pretreatment, hemicellulose and cellulose breakdown into fermentable sugars, the analytical methods for biomass characterization, and bioconversion of cellulosics into biofuels. In addition, mechanistic analysis of biomass pretreatment and enzymatic hydrolysis have been discussed in details, highlighting key factors influencing these processes at industrial scale

    Not Available

    No full text
    Not AvailableOne of the key challenges confronting the developing world is how to meet its growing energy demands and sustain economic growth without contributing to climate change and pollution. The Government of India has undertaken several policy measures to augment production and use of biodiesel during the past one decade at the national level. The government expects biodiesel will be eco-friendlier than petro-based diesel by reducing negative effects and can lead to sustainable development. Increased use of biodiesel is a significant part of the global strategy for climate change mitigation and air quality improvement. Since biodiesel is prepared entirely from biomass, it does not contain any sulfur, and having oxygen content in it improves the combustion efficiency of ignition engines and lowers the emissions. The new alternative feedstock and improved process technologies may provide a solution for the existing challenges of biodiesel production with sustainable impact in next decade in Indian perspective. The life cycle studies have also shown positive energy balance and GHG emissions for biodiesel compared to fossil diesel. The development of a domestic biodiesel, marketing, and its use is also expected to improve lives of the common people by generating more rural employment opportunities and reduce the reliance on petroleum fuels for transportation in a developing country like India.Not Availabl
    corecore