2 research outputs found

    Antisymmetric-Tensor and Electromagnetic effects in an alpha'-non-perturbative Four-Dimensional String Cosmology

    Full text link
    Starting from an exact (in the Regge slope alpha') functional method for a bosonic stringy sigma-model, we investigate four-dimensional cosmological string solutions in graviton, dilaton and antisymmetric tensor backgrounds, compatible with world-sheet conformal invariance, and valid beyond perturbative expansions in powers of alpha'. The antisymmetric tensor field, playing the role of an axion in the four-dimensional target space time, leads to spatial anisotropies of the emergent Robertson-Walker expanding Universe, and, upon coupling the system to the electromagnetic field, it results in non-trivial optical activity. Some estimates of the corresponding effects are made and their relevance to current cosmology is briefly discussed

    On the variation of the fine-structure constant: Very high resolution spectrum of QSO HE 0515-4414

    Get PDF
    We present a detailed analysis of a very high resolution (R\approx 112,000) spectrum of the quasar HE 0515-4414 obtained using the High Accuracy Radial velocity Planet Searcher (HARPS) mounted on the ESO 3.6 m telescope at the La Silla observatory. The HARPS spectrum, of very high wavelength calibration accuracy (better than 1 m\AA), is used to search for possible systematic inaccuracies in the wavelength calibration of the UV Echelle Spectrograph (UVES) mounted on the ESO Very Large Telescope (VLT). We have carried out cross-correlation analysis between the Th-Ar lamp spectra obtained with HARPS and UVES. The shift between the two spectra has a dispersion around zero of \sigma\simeq 1 m\AA. This is well within the wavelength calibration accuracy of UVES (i.e \sigma\simeq 4 m\AA). We show that the uncertainties in the wavelength calibration induce an error of about, \Delta\alpha/\alpha\le 10^{-6}, in the determination of the variation of the fine-structure constant. Thus, the results of non-evolving \Delta\alpha/\alpha reported in the literature based on UVES/VLT data should not be heavily influenced by problems related to wavelength calibration uncertainties. Our higher resolution spectrum of the z_{abs}=1.1508 damped Lyman-\alpha system toward HE 0515-4414 reveals more components compared to the UVES spectrum. Using the Voigt profile decomposition that simultaneously fits the high resolution HARPS data and the higher signal-to-noise ratio UVES data, we obtain, \Delta\alpha/\alpha=(0.05\pm0.24)x10^{-5} at z_{abs}=1.1508. This result is consistent with the earlier measurement for this system using the UVES spectrum alone.Comment: 14 pages, 13 figures, Accepted in A&
    corecore