4,102 research outputs found

    Retrieval and molecule sensitivity studies for the global ozone monitoring experiment and the scanning imaging absorption spectrometer for atmospheric chartography

    Get PDF
    The Global Ozone Monitoring Experiment (GOME) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are diode based spectrometers that will make atmospheric constituent and aerosol measurements from European satellite platforms beginning in the mid 1990's. GOME measures the atmosphere in the UV and visible in nadir scanning, while SCIAMACHY performs a combination of nadir, limb, and occultation measurements in the UV, visible, and infrared. A summary is presented of the sensitivity studies that were performed for SCIAMACHY measurements. As the GOME measurement capability is a subset of the SCIAMACHY measurement capability, the nadir, UV, and visible portion of the studies is shown to apply to GOME as well

    Estimating European volatile organic compound emissions using satellite observations of formaldehyde from the Ozone Monitoring Instrument

    Get PDF
    Emission of non-methane Volatile Organic Compounds (VOCs) to the atmosphere stems from biogenic and human activities, and their estimation is difficult because of the many and not fully understood processes involved. In order to narrow down the uncertainty related to VOC emissions, which negatively reflects on our ability to simulate the atmospheric composition, we exploit satellite observations of formaldehyde (HCHO), an ubiquitous oxidation product of most VOCs, focusing on Europe. HCHO column observations from the Ozone Monitoring Instrument (OMI) reveal a marked seasonal cycle with a summer maximum and winter minimum. In summer, the oxidation of methane and other long-lived VOCs supply a slowly varying background HCHO column, while HCHO variability is dominated by most reactive VOC, primarily biogenic isoprene followed in importance by biogenic terpenes and anthropogenic VOCs. The chemistry-transport model CHIMERE qualitatively reproduces the temporal and spatial features of the observed HCHO column, but display regional biases which are attributed mainly to incorrect biogenic VOC emissions, calculated with the Model of Emissions of Gases and Aerosol from Nature (MEGAN) algorithm. These "bottom-up" or a-priori emissions are corrected through a Bayesian inversion of the OMI HCHO observations. Resulting "top-down" or a-posteriori isoprene emissions are lower than "bottom-up" by 40% over the Balkans and by 20% over Southern Germany, and higher by 20% over Iberian Peninsula, Greece and Italy. We conclude that OMI satellite observations of HCHO can provide a quantitative "top-down" constraint on the European "bottom-up" VOC inventories

    Mapping isoprene emissions over North America using formaldehyde column observations from space

    Get PDF
    We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%)

    Industry Structure and Market Potential for Value-added Wood Products in Northwest Louisiana (Bulletin #872)

    Get PDF
    This bulletin explains how value-added secondary wood processing offers opportunities for increased profitability through higher margins and increased profits. It also includes information on how secondary manufacturers can generally increase prices to make up for lost profits when raw material costs rise.https://digitalcommons.lsu.edu/agcenter_bulletins/1030/thumbnail.jp

    A Timber Resource Assessment of Northwest Louisiana (Bulletin #873)

    Get PDF
    This publication focuses on forest resources and implications for industry development in this region.https://digitalcommons.lsu.edu/agcenter_bulletins/1027/thumbnail.jp

    Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    Get PDF
    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data

    Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    Get PDF
    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 500 to 750 psi. Each test was allowed to reach quasisteady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data

    Improved ozone profile retrievals from GOME data with degradation correction in reflectance

    Get PDF
    We present a simple method to perform degradation correction to Global Ozone Monitoring Experiment (GOME) reflectance spectra by comparing the average reflectance for 60&deg; N&ndash;60&deg; S with that at the beginning of GOME observations (July&ndash;December 1995) after removing the dependences on solar zenith angle and seasonal variation. The results indicate positive biases of up to ~15&ndash;25% in the wavelength range 289&ndash;370 nm during 2000&ndash;2002; the degradation also exhibits significant dependence on wavelength and viewing zenith angle. These results are consistent with previous studies using radiative transfer models and ozone observations. The degradation causes retrieval biases of up to ~3% (10 DU, 1 DU=2.69&times;10<sup>16</sup> molecules cm<sup>&minus;2</sup>), 30% (10 DU), 10%, and 40% in total column ozone, tropospheric column ozone, stratospheric ozone and tropospheric ozone, respectively, from our GOME ozone profile retrieval algorithm. In addition, retrieval biases due to degradation vary significantly with latitude. The application of this degradation correction improves the retrievals relative to Dobson and ozonesonde measurements at Hohenpeißenberg station during 2000&ndash;2003 and improves the spatiotemporal consistency of retrieval quality during 1996&ndash;2003. However, because this method assumes that the deseasonalized globally-averaged reflectance does not change much with time, retrievals with this correction may be inadequate for trend analysis. In addition, it does not correct for instrument biases that have occurred since launch
    corecore