4,290 research outputs found

    Mountains of Maize, Persistent Poverty

    Get PDF
    The past two years are a tribute to Zambian farmers; they have responded admirably to government efforts to promote maize production. But ironically, rural poverty remains stubbornly high despite the fact that the government has spent over 2% of the nation’s gross domestic product in supporting maize production and subsidizing inputs for farmers. Why is it that maize production has increased so impressively without making a serious dent in rural poverty? And what are the lessons for the new government?maize, poverty, Zambia, Agricultural and Food Policy, Food Security and Poverty,

    Mapping isoprene emissions over North America using formaldehyde column observations from space

    Get PDF
    We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%)

    A comparison of spectrophotometric and denuder based approaches for the determination of gaseous molecular iodine

    Get PDF
    The presence of molecular iodine in the atmosphere is thought to have implications for both climate and human nutritional health, but measurement of the gas at low concentrations requires technically demanding techniques that are not widely accessible. Here, amylose coated denuder tubes and solvent traps coupled with spectrophotometric detection are evaluated and compared as relatively cheap and straightforward methods to measure gaseous molecular iodine at environmentally relevant concentrations. Denuder tubes were found to give unacceptably low and highly variable recoveries of molecular iodine from a test gas source, with values ranging from 1 to 62%. Blank concentrations were also high, being equivalent to a gas phase concentration of 5 pptv under typical operating conditions. Ethanol and hexane solvent traps gave much better performance. Optimisation of the hexane solvent trap method gave 100% recovery and an atmospheric limit of detection of 70 pptv, which is within the range of concentrations observed in the coastal marine atmosphere

    Tunable far infrared studies of molecular parameters in support of stratospheric measurements

    Get PDF
    Lab studies were made in support of far infrared spectroscopy of the stratosphere using the Tunable Far InfraRed (TuFIR) method of ultrahigh resolution spectroscopy and, more recently, spectroscopic and retrieval calculations performed in support of satellite-based atmospheric measurement programs: the Global Ozone Monitoring Experiment (GOME), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY)

    A Middle School's Approach to Developing an Effective School Work Culture

    Get PDF
    The ultimate goal for any school administrator must be to develop an educational culture that establishes norms, behaviors, attitudes, and expectations. Only with the development of an effective work culture can schools and those within them achieve their full potential.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    New retrieval of BrO from SCIAMACHY limb: an estimate of the stratospheric bromine loading during April 2008

    Get PDF
    We present a new retrieval of stratospheric BrO (bromine monoxide) from channel 2 SCIAMACHY (SCanning Imaging Absorption spectrometer for Atmospheric CHartographY) limb observations. Retrievals are shown to agree with independent balloon observations to within one standard deviation of the retrieval noise. We retrieve BrO profiles for all of April 2008, and apply simulated [BrO]/[Br<sub>y</sub>] (bromine monoxide : stratospheric inorganic bromine) ratios to estimate the stratospheric Br<sub>y</sub> loading. We find 23.5 ± 6 ppt Br, suggesting 7 ppt Br from short-lived bromocarbons to be at the high end of the current best estimate (3–8 ppt). The 6 ppt Br uncertainty estimate is dominated by the 21% uncertainty in the simulated [BrO] / [Br<sub>y</sub>] ratio due to propagation of errors from the underlying chemical kinetics

    Photonic mode density effects on single-molecule fluorescence blinking

    Get PDF
    We investigated the influence of the photonic mode density (PMD) on the triplet dynamics of individual chromophores on a dielectric interface by comparing their response in the presence and absence of a nearby gold film. Lifetimes of the excited singlet state were evaluated in ordet to measure directly the PMD at the molecules position. Triplet state lifetimes were simultaneously determined by statistical analysis of the detection time of the fluorescence photons. The observed singlet decay rates are in agreement with the predicted PMD for molecules with different orientations. The triplet decay rate is modified in a fashion correlated to the singlet decay rate. These results show that PMD engineering can lead to an important suppression of the fluorescence, introducing a novel aspect of the physical mechanism to enhance fluorescence intensity in PMD-enhancing systems such as plasmonic devices

    Casimir Force between a Dielectric Sphere and a Wall: A Model for Amplification of Vacuum Fluctuations

    Get PDF
    The interaction between a polarizable particle and a reflecting wall is examined. A macroscopic approach is adopted in which the averaged force is computed from the Maxwell stress tensor. The particular case of a perfectly reflecting wall and a sphere with a dielectric function given by the Drude model is examined in detail. It is found that the force can be expressed as the sum of a monotonically decaying function of position and of an oscillatory piece. At large separations, the oscillatory piece is the dominant contribution, and is much larger than the Casimir-Polder interaction that arises in the limit that the sphere is a perfect conductor. It is argued that this enhancement of the force can be interpreted in terms of the frequency spectrum of vacuum fluctuations. In the limit of a perfectly conducting sphere, there are cancellations between different parts of the spectrum which no longer occur as completely in the case of a sphere with frequency dependent polarizability. Estimates of the magnitude of the oscillatory component of the force suggest that it may be large enough to be observable.Comment: 18pp, LaTex, 7 figures, uses epsf. Several minor errors corrected, additional comments added in the final two sections, and references update

    Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    No full text
    International audienceThe effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US) and once for lower side (LS) of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO4-2)-1, which compare to US values of 0.030 and 13.9 m2 (g SO4-2)-1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m-2) are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL=-0.750, FU=-0.930, and DFU,L=24% for full sky calculations without clouds and FL=-0.485, FU=-0.605, and DFU,L=25% when clouds are included. Regionally, DFU,L=48% over the USA, 55% over Europe, and 34% over East Asia. Seasonally, DFU,L varies from 18% in DJF to 75% in SON over the USA. The global annual average contribution from anthropogenic aerosol is FL=-0.314 and FU=-0.404, which yield normalized direct radiative forcings (G) of GL=-205 W (g SO4-2)-1 and GU=-264 W (g SO4-2)-1

    Monitoring high-ozone events in the US Intermountain West using TEMPO geostationary satellite observations

    Get PDF
    High-ozone events, approaching or exceeding the National Ambient Air Quality Standard (NAAQS), are frequently observed in the US Intermountain West in association with subsiding air from the free troposphere. Monitoring and attribution of these events is problematic because of the sparsity of the current network of surface measurements and lack of vertical information. We present an Observing System Simulation Experiment (OSSE) to evaluate the ability of the future geostationary satellite instrument Tropospheric Emissions: Monitoring of Pollution (TEMPO), scheduled for launch in 2018–2019, to monitor and attribute high-ozone events in the Intermountain West through data assimilation. TEMPO will observe ozone in the ultraviolet (UV) and visible (Vis) bands to provide sensitivity in the lower troposphere. Our OSSE uses ozone data from the GFDL AM3 chemistry-climate model (CCM) as the "true" atmosphere and samples it for April–June 2010 with the current surface network (CASTNet –Clean Air Status and Trends Network– sites), a configuration designed to represent TEMPO, and a low Earth orbit (LEO) IR (infrared) satellite instrument. These synthetic data are then assimilated into the GEOS-Chem chemical transport model (CTM) using a Kalman filter. Error correlation length scales (500 km in horizontal, 1.7 km in vertical) extend the range of influence of observations. We show that assimilation of surface data alone does not adequately detect high-ozone events in the Intermountain West. Assimilation of TEMPO data greatly improves the monitoring capability, with little information added from the LEO instrument. The vertical information from TEMPO further enables the attribution of NAAQS exceedances to background ozone. This is illustrated with the case of a stratospheric intrusion
    • …
    corecore