203 research outputs found

    The Supreme Law of Utility Rate Hikes The Hope and Bluefield Decisions

    Get PDF

    Key inflammatory pathway activations in the MCI stage of Alzheimer's disease

    Get PDF
    OBJECTIVE: To determine the key inflammatory pathways that are activated in the peripheral and CNS compartments at the mild cognitive impairment (MCI) stage of Alzheimer's disease (AD). METHODS: A cross-sectional study of patients with clinical and biomarker characteristics consistent with MCI-AD in a discovery cohort, with replication in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Inflammatory analytes were measured in the CSF and plasma with the same validated multiplex analyte platform in both cohorts and correlated with AD biomarkers (CSF Aβ42, total tau (t-tau), phosphorylated tau (p-tau) to identify key inflammatory pathway activations. The pathways were additionally validated by evaluating genes related to all analytes in coexpression networks of brain tissue transcriptome from an autopsy confirmed AD cohort to interrogate if the same pathway activations were conserved in the brain tissue gene modules. RESULTS: Analytes of the tumor necrosis factor (TNF) signaling pathway (KEGG ID:4668) in the CSF and plasma best correlated with CSF t-tau and p-tau levels, and analytes of the complement and coagulation pathway (KEGG ID:4610) best correlated with CSF Aβ42 levels. The top inflammatory signaling pathways of significance were conserved in the peripheral and the CNS compartments. They were also confirmed to be enriched in AD brain transcriptome gene clusters. INTERPRETATION: A cell-protective rather than a proinflammatory analyte profile predominates in the CSF in relation to neurodegeneration markers among MCI-AD patients. Analytes from the TNF signaling and the complement and coagulation pathways are relevant in evaluating disease severity at the MCI stage of AD

    Bifurcation of Localized Disturbances in a Model Biochemical Reaction

    Full text link

    An empirical study of the psychodynamics of suicide: A preliminary report

    Full text link
    Preliminary results from a study of psychodynamic constructs are presented based on data from inpatients following a suicide attempt. The study examines the association between four psychodynamic constructs, severity of suicidal intent, and severity of depressive symptomatology in a sample of hospitalized suicide attempters. Higher levels of suicidal intent were associated with less differentiated self and object representations and less emotional investment in relationships. More severe depressive symptoms in suicide attempters were correlated with more self‐targeted anger; less eternally directed anger, higher levels of shame and guilt, more affectively negative views of relationships, greater use of maladaptive and self‐sacrificing defenses, and more impaired reality testing. These findings offer some preliminary empirical support for the validity of psychodynamic theories of suicidal behavior. Depression 4:89–91 (1996). © 1997 Wiley‐Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106104/1/9_ftp.pd

    Key Inflammatory Pathway Activations in the MCI Stage of Alzheimer’s disease

    Get PDF
    Objective: To determine the key inflammatory pathways that are activated in the peripheral and CNS compartments at the mild cognitive impairment (MCI) stage of Alzheimer’s disease (AD). Methods: A cross-sectional study of patients with clinical and biomarker characteristics consistent with MCI-AD in a discovery cohort, with replication in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Inflammatory analytes were measured in the CSF and plasma with the same validated multiplex analyte platform in both cohorts and correlated with AD biomarkers (CSF Aβ42, total tau (t-tau), phosphorylated tau (p-tau) to identify key inflammatory pathway activations. The pathways were additionally validated by evaluating genes related to all analytes in coexpression networks of brain tissue transcriptome from an autopsy confirmed AD cohort to interrogate if the same pathway activations were conserved in the brain tissue gene modules. Results: Analytes of the tumor necrosis factor (TNF) signaling pathway (KEGG ID:4668) in the CSF and plasma best correlated with CSF t-tau and p-tau levels, and analytes of the complement and coagulation pathway (KEGG ID:4610) best correlated with CSF Aβ42 levels. The top inflammatory signaling pathways of significance were conserved in the peripheral and the CNS compartments. They were also confirmed to be enriched in AD brain transcriptome gene clusters. Interpretation: A cell-protective rather than a proinflammatory analyte profile predominates in the CSF in relation to neurodegeneration markers among MCI-AD patients. Analytes from the TNF signaling and the complement and coagulation pathways are relevant in evaluating disease severity at the MCI stage of AD

    Inflammatory Pathway Analytes Predicting Rapid Cognitive Decline in MCI stage of Alzheimer’s disease

    Get PDF
    Objective: To determine the inflammatory analytes that predict clinical progression and evaluate their performance against biomarkers of neurodegeneration. Methods: A longitudinal study of MCI-AD patients in a Discovery cohort over 15 months, with replication in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) MCI cohort over 36 months. Fifty-three inflammatory analytes were measured in the CSF and plasma with a RBM multiplex analyte platform. Inflammatory analytes that predict clinical progression on Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB) and Mini Mental State Exam scores were assessed in multivariate regression models. To provide context, key analyte results in ADNI were compared against biomarkers of neurodegeneration, hippocampal volume, and CSF neurofilament light (NfL), in receiver operating characteristic (ROC) analyses evaluating highest quartile of CDR-SB change over two years (≥3 points). Results: Cerebrospinal fluid inflammatory analytes in relation to cognitive decline were best described by gene ontology terms, natural killer cell chemotaxis, and endothelial cell apoptotic process and in plasma, extracellular matrix organization, blood coagulation, and fibrin clot formation described the analytes. CSF CCL2 was most robust in predicting rate of cognitive change and analytes that correlated to CCL2 suggest IL-10 pathway dysregulation. The ROC curves for ≥3 points change in CDR-SB over 2 years when comparing baseline hippocampal volume, CSF NfL, and CCL2 were not significantly different. Interpretation: Baseline levels of immune cell chemotactic cytokine CCL2 in the CSF and IL-10 pathway dysregulation impact longitudinal cognitive and functional decline in MCI-AD. CCL2’s utility appears comparable to biomarkers of neurodegeneration in predicting rapid decline

    Relating diffusion tensor imaging measurements to microstructural quantities in the cerebral cortex in multiple sclerosis

    Get PDF
    To investigate whether the observed anisotropic diffusion in cerebral cortex may reflect its columnar cytoarchitecture and myeloarchitecture, as a potential biomarker for disease‐related changes, we compared postmortem diffusion magnetic resonance imaging scans of nine multiple sclerosis brains with histology measures from the same regions. Histology measurements assessed the cortical minicolumnar structure based on cell bodies and associated axon bundles in dorsolateral prefrontal cortex (Area 9), Heschl's gyrus (Area 41), and primary visual cortex (V1). Diffusivity measures included mean diffusivity, fractional anisotropy of the cortex, and three specific measures that may relate to the radial minicolumn structure: the angle of the principal diffusion direction in the cortex, the component that was perpendicular to the radial direction, and the component that was parallel to the radial direction. The cellular minicolumn microcircuit features were correlated with diffusion angle in Areas 9 and 41, and the axon bundle features were correlated with angle in Area 9 and to the parallel component in V1 cortex. This may reflect the effect of minicolumn microcircuit organisation on diffusion in the cortex, due to the number of coherently arranged membranes and myelinated structures. Several of the cortical diffusion measures showed group differences between MS brains and control brains. Differences between brain regions were also found in histology and diffusivity measurements consistent with established regional variation in cytoarchitecture and myeloarchitecture. Therefore, these novel measures may provide a surrogate of cortical organisation as a potential biomarker, which is particularly relevant for detecting regional changes in neurological disorders

    Inflammatory pathway analytes predicting rapid cognitive decline in MCI stage of Alzheimer’s disease

    Get PDF
    Objective To determine the inflammatory analytes that predict clinical progression and evaluate their performance against biomarkers of neurodegeneration. Methods A longitudinal study of MCI‐AD patients in a Discovery cohort over 15 months, with replication in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) MCI cohort over 36 months. Fifty‐three inflammatory analytes were measured in the CSF and plasma with a RBM multiplex analyte platform. Inflammatory analytes that predict clinical progression on Clinical Dementia Rating Scale‐Sum of Boxes (CDR‐SB) and Mini Mental State Exam scores were assessed in multivariate regression models. To provide context, key analyte results in ADNI were compared against biomarkers of neurodegeneration, hippocampal volume, and CSF neurofilament light (NfL), in receiver operating characteristic (ROC) analyses evaluating highest quartile of CDR‐SB change over two years (≥3 points). Results Cerebrospinal fluid inflammatory analytes in relation to cognitive decline were best described by gene ontology terms, natural killer cell chemotaxis, and endothelial cell apoptotic process and in plasma, extracellular matrix organization, blood coagulation, and fibrin clot formation described the analytes. CSF CCL2 was most robust in predicting rate of cognitive change and analytes that correlated to CCL2 suggest IL‐10 pathway dysregulation. The ROC curves for ≥3 points change in CDR‐SB over 2 years when comparing baseline hippocampal volume, CSF NfL, and CCL2 were not significantly different. Interpretation Baseline levels of immune cell chemotactic cytokine CCL2 in the CSF and IL‐10 pathway dysregulation impact longitudinal cognitive and functional decline in MCI‐AD. CCL2’s utility appears comparable to biomarkers of neurodegeneration in predicting rapid decline

    Vicious and Virtuous Cycles and the Role of External Non-government Actors in Community Forestry in Oaxaca and Michoacán, Mexico

    Get PDF
    Community forestry offers potential for socioeconomic benefits while maintaining ecosystem services. In Mexico, government and donor efforts to develop this sector focus on issues within forest communities. Often overlooked are effects of external non-government actors (NGOs and foresters) as links or barriers between communities and funding, capacity building, and technical support. To analyze the role of these actors, I analyze household survey and interview data from 11 communities with varying levels of vertical integration of forestry production in states with divergent records of community forestry, Oaxaca and Michoacán. Results suggest that strong community governance is necessary but not sufficient for vertical integration, and strong interactions with non-government actors are critical. These actors, operating within the existing framework of government regulations, have a range of incentives for engaging communities. Availability of these actors motivated by concern for community capacity instead of timber income may be a determinant of community forestry development

    Validation of MIPAS ClONO2 measurements

    Get PDF
    Altitude profiles of ClONO2 retrieved with the IMK (Institut fur Meteorologie und Klimaforschung) science-oriented data processor from MIPAS/Envisat (Michelson Interferometer for Passive Atmospheric Sounding on Envisat) mid-infrared limb emission measurements between July 2002 and March 2004 have been validated by comparison with balloon-borne (Mark IV, FIRS2, MIPAS-B), airborne (MIPAS-STR), ground-based (Spitsbergen, Thule, Kiruna, Harestua, Jungfraujoch, Izana, Wollongong, Lauder), and spaceborne (ACE-FTS) observations. With few exceptions we found very good agreement between these instruments and MIPAS with no evidence for any bias in most cases and altitude regions. For balloon-borne measurements typical absolute mean differences are below 0.05 ppbv over the whole altitude range from 10 to 39 km. In case of ACE-FTS observations mean differences are below 0.03 ppbv for observations below 26 km. Above this altitude the comparison with ACE-FTS is affected by the photochemically induced diurnal variation of ClONO2. Correction for this by use of a chemical transport model led to an overcompensation of the photochemical effect by up to 0.1 ppbv at altitudes of 30-35 km in case of MIPAS-ACE-FTS comparisons while for the balloon-borne observations no such inconsistency has been detected. The comparison of MIPAS derived total column amounts with ground-based observations revealed no significant bias in the MIPAS data. Mean differences between MIPAS and FTIR column abundances are 0.11 +/- 0.12 x 10(14) cm(-2) (1.0 +/- 1.1%) and -0.09 +/- 0.19 x 10(14) cm(-2) (-0.8 +/- 1.7%), depending on the coincidence criterion applied. chi(2) tests have been performed to assess the combined precision estimates of MIPAS and the related instruments. When no exact coincidences were available as in case of MIPAS-FTIR or MIPAS-ACE-FTS comparisons it has been necessary to take into consideration a coincidence error term to account for chi(2) deviations. From the resulting chi(2) profiles there is no evidence for a systematic over/underestimation of the MIPAS random error analysis.Peer reviewe
    corecore