19 research outputs found

    Neuronal localization of the 25-kDa specific thiamine triphosphatase in rodent brain

    Full text link
    Thiamine triphosphate (ThTP) is found in small amounts in most organisms from bacteria to mammals, but little is known about its physiological role. In vertebrate tissues, ThTP may act as a phosphate donor for the phosphorylation of certain proteins; this may be part of a new signal transduction pathway. We have recently characterized a highly specific 25-kDa thiamine triphosphatase (ThTPase) that is expressed in most mammalian tissues. The role of this enzyme may be the control of intracellular concentrations of ThTP. As the latter has been considered to be a neuroactive form of thiamine, we have studied the distribution of ThTPase mRNA and protein in rodent brain using in situ hybridization and immunohistochemistry. With both methods, we found the strongest staining in hippocampal pyramidal neurons, as well as cerebellar granule cells and Purkinje cells. Some interneurons were also labeled and many ThTPase mRNA-positive and immunoreactive cells were distributed throughout cerebral cortical gray matter and the thalamus. White matter was not significantly labeled. ThTPase immunoreactivity seems to be located mainly in the cytoplasm of neuronal perikarya. Immunocytochemical data using dissociated cultured cells from hippocampal and cerebellum showed that the staining was more intense in neurons than in astrocytes. The protein was rather uniformly located in the perikarya and dendrites, suggesting that ThTP and ThTPase may play a general role in neuronal metabolism rather than a specific role in excitability. There was no apparent correlation between ThTPase expression and selective vulnerability of certain brain regions to thiamine deficiency. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved
    corecore