42 research outputs found

    Modeling deformation induced by seasonal variations of continental water in the Himalaya region: Sensitivity to Earth elastic structure

    Get PDF
    Strong seasonal variations of horizontal and vertical positions are observed on GPS time series from stations located in Nepal, India, and Tibet (China). We show that this geodetic deformation can be explained by seasonal variations of continental water storage driven by the monsoon. For this purpose, we use satellite data from the Gravity Recovery and Climate Experiment to determine the time evolution of surface loading. We compute the expected geodetic deformation assuming a perfectly elastic Earth model. We consider Green's functions, describing the surface deformation response to a point load, for an elastic homogeneous half-space model and for a layered nonrotating spherical Earth model based on the Preliminary Reference Earth Model and a local seismic velocity model. The amplitude and phase of the seasonal variation of the vertical and horizontal geodetic positions can be jointly adjusted only with the layered Earth model, while an elastic half-space model fails, emphasizing the importance of using a realistic Earth elastic structure to model surface displacements induced by surface loading. We demonstrate, based on a formal inversion, that the fit to the geodetic data can be improved by adjusting the layered Earth model. Therefore, the study also shows that the modeling of geodetic seasonal variations provides a way to probe the elastic structure of the Earth, even in the absence of direct measurements of surface load variations

    Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone

    Get PDF
    The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or ‘stable’ plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load

    Self-consistent determination of the Earth’s GM, geocenter motion and figure axis orientation

    No full text
    International audienc

    Sensitivity of Acoustic Emission Triggering to Small Pore Pressure Cycling Perturbations During Brittle Creep

    Get PDF
    International audienceFluid‐induced stress perturbations in the crust at seismogenic depths caused by sources such as tidal or seasonal loading may trigger earthquakes. We investigate the role of small periodic pore pressure (Pp) perturbation in rupture nucleation by performing laboratory triaxial creep experiments on Fontainebleau sandstone, saturated in water, under sinusoidal Pp variations. Results show that recorded acoustic emissions (AEs) correlate with Pp as the rock approaches failure. More interestingly, AEs occur significantly more when Pp is decreasing, that is, when strain rate is maximum with a progressive increase of Pp‐AEs correlation in time as the rock approaches failure. This suggests that the correlation of small stress perturbations and AEs not only depends on Pp amplitude but also on the criticality of the rock. Observations at the laboratory scale support field observations where tidal loading may have modulated seismic rates during the nucleation phase of the 2004 Sumatra‐Andaman and 2011 Tohoku‐Oki earthquakes

    Accounting for spatiotemporal correlations of GNSS coordinate time series to estimate station velocities

    No full text
    International audienceIt is well known that GNSS permanent station coordinate time series exhibit time-correlated noise. Spatial correlations between coordinate time series of nearby stations are also long-established and generally handled by means of spatial filtering techniques. Accounting for both the temporal and spatial correlations of the noise via a spatiotemporal covariance model is however not yet a common practice. We demonstrate in this paper the interest of using such a spatiotemporal covariance model of the stochastic variations in GNSS time series in order to estimate long-term station coordinates and especially velocities. We provide a methodology to rigorously assess the covariances between horizontal coordinate variations and use it to derive a simple exponential spatiotemporal covariance model for the stochastic variations in the IGS repro2 station coordinate time series. We then use this model to estimate station velocities for two selected datasets of 10 time series in Europe and 11 time series in the USA. We show that coordinate prediction as well as velocity determination from short time series are improved when using this spatiotemporal model, as compared with the case where spatiotemporal correlations are ignored
    corecore