51,814 research outputs found
Physics of planetary atmospheres. i- ray- leigh scattering by helium
Physics of planetary atmospheres - Variation method used to calculate Rayleigh scattering cross sections of helium as wavelength functio
A Hybrid Differential Evolution Approach to Designing Deep Convolutional Neural Networks for Image Classification
Convolutional Neural Networks (CNNs) have demonstrated their superiority in
image classification, and evolutionary computation (EC) methods have recently
been surging to automatically design the architectures of CNNs to save the
tedious work of manually designing CNNs. In this paper, a new hybrid
differential evolution (DE) algorithm with a newly added crossover operator is
proposed to evolve the architectures of CNNs of any lengths, which is named
DECNN. There are three new ideas in the proposed DECNN method. Firstly, an
existing effective encoding scheme is refined to cater for variable-length CNN
architectures; Secondly, the new mutation and crossover operators are developed
for variable-length DE to optimise the hyperparameters of CNNs; Finally, the
new second crossover is introduced to evolve the depth of the CNN
architectures. The proposed algorithm is tested on six widely-used benchmark
datasets and the results are compared to 12 state-of-the-art methods, which
shows the proposed method is vigorously competitive to the state-of-the-art
algorithms. Furthermore, the proposed method is also compared with a method
using particle swarm optimisation with a similar encoding strategy named IPPSO,
and the proposed DECNN outperforms IPPSO in terms of the accuracy.Comment: Accepted by The Australasian Joint Conference on Artificial
Intelligence 201
A simulation model for wind energy storage systems. Volume 1: Technical report
A comprehensive computer program for the modeling of wind energy and storage systems utilizing any combination of five types of storage (pumped hydro, battery, thermal, flywheel and pneumatic) was developed. The level of detail of Simulation Model for Wind Energy Storage (SIMWEST) is consistent with a role of evaluating the economic feasibility as well as the general performance of wind energy systems. The software package consists of two basic programs and a library of system, environmental, and load components. The first program is a precompiler which generates computer models (in FORTRAN) of complex wind source storage application systems, from user specifications using the respective library components. The second program provides the techno-economic system analysis with the respective I/O, the integration of systems dynamics, and the iteration for conveyance of variables. SIMWEST program, as described, runs on the UNIVAC 1100 series computers
The Current Use of Stem Cells in Bladder Tissue Regeneration and Bioengineering.
Many pathological processes including neurogenic bladder and malignancy necessitate bladder reconstruction, which is currently performed using intestinal tissue. The use of intestinal tissue, however, subjects patients to metabolic abnormalities, bladder stones, and other long-term sequelae, raising the need for a source of safe and reliable bladder tissue. Advancements in stem cell biology have catapulted stem cells to the center of many current tissue regeneration and bioengineering strategies. This review presents the recent advancements in the use of stem cells in bladder tissue bioengineering
Tropospheric HO2 determination by FAGE
The detection efficiency is greatest at low pressures, where the subsequent removal of the HO product by the NO reagent (via HO + NO + M yields HONO + M) is relatively slow. Moreover, nozzle expansion of the air from ambient to low pressures produces a turbulent zone that assists in mixing the reagent with the sample. If the HO product is observed by laser-excited fluorescence, then the other advantages of low-pressure detection by FAGE (Fluorescence Assay with Gas Expansion) also apply. The FAGE instrumental response was calibrated to external HO2 by observing NO decay in the photolysis of HO-CH2O mixtures and by choosing conditions in which HO2 + NO is the only significant NO destruction path. HO2 was determined in urban air
Stabilization of the p-wave superfluid state in an optical lattice
It is hard to stabilize the p-wave superfluid state of cold atomic gas in
free space due to inelastic collisional losses. We consider the p-wave Feshbach
resonance in an optical lattice, and show that it is possible to have a stable
p-wave superfluid state where the multi-atom collisional loss is suppressed
through the quantum Zeno effect. We derive the effective Hamiltonian for this
system, and calculate its phase diagram in a one-dimensional optical lattice.
The results show rich phase transitions between the p-wave superfluid state and
different types of insulator states induced either by interaction or by
dissipation.Comment: 5 pages, 5 figure
- …