25,675 research outputs found
Characterization of measurements in quantum communication
A characterization of quantum measurements by operator valued measures is presented. The generalized measurements include simultaneous approximate measurement of noncommuting observables. This characterization is suitable for solving problems in quantum communication. Two realizations of such measurements are discussed. The first is by adjoining an apparatus to the system under observation and performing a measurement corresponding to a self-adjoint operator in the tensor-product Hilbert space of the system and apparatus spaces. The second realization is by performing, on the system alone, sequential measurements that correspond to self-adjoint operators, basing the choice of each measurement on the outcomes of previous measurements. Simultaneous generalized measurements are found to be equivalent to a single finer grain generalized measurement, and hence it is sufficient to consider the set of single measurements. An alternative characterization of generalized measurement is proposed. It is shown to be equivalent to the characterization by operator-values measures, but it is potentially more suitable for the treatment of estimation problems. Finally, a study of the interaction between the information-carrying system and a measurement apparatus provides clues for the physical realizations of abstractly characterized quantum measurements
Unique gap structure and symmetry of the charge density wave in single-layer VSe
Single layers of transition metal dichalcogenides (TMDCs) are excellent
candidates for electronic applications beyond the graphene platform; many of
them exhibit novel properties including charge density waves (CDWs) and
magnetic ordering. CDWs in these single layers are generally a planar
projection of the corresponding bulk CDWs because of the quasi-two-dimensional
nature of TMDCs; a different CDW symmetry is unexpected. We report herein the
successful creation of pristine single-layer VSe, which shows a () CDW in contrast to the (4 4) CDW for the layers in
bulk VSe. Angle-resolved photoemission spectroscopy (ARPES) from the single
layer shows a sizable () CDW gap of 100 meV at the
zone boundary, a 220 K CDW transition temperature twice the bulk value, and no
ferromagnetic exchange splitting as predicted by theory. This robust CDW with
an exotic broken symmetry as the ground state is explained via a
first-principles analysis. The results illustrate a unique CDW phenomenon in
the two-dimensional limit
2x20 Gbps - 40 GHz OFDM Ro-FSO transmission with mode division multiplexing
Radio-over-Free-Space-Optics (Ro-FSO) is a promising technology for future wireless networks.In this work, we have designed a hybrid orthogonal frequency division multiplexing (OFDM) Ro-FSO system for transmission of two independent channels by mode division multiplexing.Two independent 40 GHz radio signals are optically modulated at 20Gbps by mode division multiplexing of two laser modes LG00 and LG10 and transmitted over a free-space link of 20 km to 100 km. The performance of proposed Ro-FSO system is also evaluated under the effect of strong atmospheric turbulences
Large-Scale Structure in Brane-Induced Gravity II. Numerical Simulations
We use N-body simulations to study the nonlinear structure formation in
brane-induced gravity, developing a new method that requires alternate use of
Fast Fourier Transforms and relaxation. This enables us to compute the
nonlinear matter power spectrum and bispectrum, the halo mass function, and the
halo bias. From the simulation results, we confirm the expectations based on
analytic arguments that the Vainshtein mechanism does operate as anticipated,
with the density power spectrum approaching that of standard gravity within a
modified background evolution in the nonlinear regime. The transition is very
broad and there is no well defined Vainshtein scale, but roughly this
corresponds to k_*~ 2 at redshift z=1 and k_*~ 1 at z=0. We checked that while
extrinsic curvature fluctuations go nonlinear, and the dynamics of the
brane-bending mode C receives important nonlinear corrections, this mode does
get suppressed compared to density perturbations, effectively decoupling from
the standard gravity sector. At the same time, there is no violation of the
weak field limit for metric perturbations associated with C. We find good
agreement between our measurements and the predictions for the nonlinear power
spectrum presented in paper I, that rely on a renormalization of the linear
spectrum due to nonlinearities in the modified gravity sector. A similar
prediction for the mass function shows the right trends. Our simulations also
confirm the induced change in the bispectrum configuration dependence predicted
in paper I.Comment: 19 pages, 13 figures. v2: corrected typos, added more simulations,
better test of predictions in large mass regime. v3: minor changes, published
versio
Dissipation in Quasi One-Dimensional Superconducting Single-Crystal Sn Nanowires
Electrical transport measurements were made on single-crystal Sn nanowires to
understand the intrinsic dissipation mechanisms of a one-dimensional
superconductor. While the resistance of wires of diameter larger than 70 nm
drops precipitately to zero at Tc near 3.7 K, a residual resistive tail
extending down to low temperature is found for wires with diameters of 20 and
40 nm. As a function of temperature, the logarithm of the residual resistance
appears as two linear sections, one within a few tenths of a degree below Tc
and the other extending down to at least 0.47 K, the minimum temperature of the
measurements. The residual resistance is found to be ohmic at all temperatures
below Tc of Sn. These findings are suggestive of a thermally activated phase
slip process near Tc and quantum fluctuation-induced phase slip process in the
low temperature regime. When the excitation current exceeds a critical value,
the voltage-current (V-I) curves show a series of discrete steps in approaching
the normal state. These steps cannot be fully understood with the classical
Skocpol-Beasley-Tinkham phase slip center model (PSC), but can be qualitatively
accounted for partly by the PSC model modified by Michotte et al.Comment: 7 pages, 5 figures. To be appeared on Physical Review B 71, 200
Black hole as an Information Eraser
We discuss the identity of black hole entropy and show that the first law of
black hole thermodynamics, in the case of a Schwarzschild black hole, can be
derived from Landauer's principle by assuming that the black hole is one of the
most efficient information erasers in systems of a given temperature. The term
"most efficient" implies that minimal energy is required to erase a given
amount of information. We calculate the discrete mass spectra and the entropy
of a Schwarzschild black hole assuming that the black hole processes
information in unit of bits. The black hole entropy acquires a sub-leading
contribution proportional to the logarithm of its mass-squared in addition to
the usual mass-squared term without an artificial cutoff. We also argue that
the minimum of the black hole mass is .Comment: 12 pages, 4 figures, minor change
Thermodynamics of the superfluid dilute Bose gas with disorder
We generalize the Beliaev-Popov diagrammatic technique for the problem of
interacting dilute Bose gas with weak disorder. Averaging over disorder is
implemented by the replica method. Low energy asymptotic form of the Green
function confirms that the low energy excitations of the superfluid dirty Boson
system are sound waves with velocity renormalized by the disorder and
additional dissipation due to the impurity scattering. We find the
thermodynamic potential and the superfluid density at any temperature below the
superfluid transition temperature and derive the phase diagram in temperature
vs. disorder plane.Comment: 4 page
Fast and Accurate Computation of Orbital Collision Probability for Short-Term Encounters
International audienceThis article provides a new method for computing the probability of collision between two spherical space objects involved in a short-term encounter under Gaussian-distributed uncertainty. In this model of conjunction, classical assumptions reduce the probability of collision to the integral of a two-dimensional Gaussian probability density function over a disk. The computational method presented here is based on an analytic expression for the integral, derived by use of Laplace transform and D-finite functions properties. The formula has the form of a product between an exponential term and a convergent power series with positive coefficients. Analytic bounds on the truncation error are also derived and are used to obtain a very accurate algorithm. Another contribution is the derivation of analytic bounds on the probability of collision itself, allowing for a very fast and - in most cases - very precise evaluation of the risk. The only other analytical method of the literature - based on an approximation - is shown to be a special case of the new formula. A numerical study illustrates the efficiency of the proposed algorithms on a broad variety of examples and favorably compares the approach to the other methods of the literature
Compressed Data Structures for Dynamic Sequences
We consider the problem of storing a dynamic string over an alphabet
in compressed form. Our representation
supports insertions and deletions of symbols and answers three fundamental
queries: returns the -th symbol in ,
counts how many times a symbol occurs among the
first positions in , and finds the position
where a symbol occurs for the -th time. We present the first
fully-dynamic data structure for arbitrarily large alphabets that achieves
optimal query times for all three operations and supports updates with
worst-case time guarantees. Ours is also the first fully-dynamic data structure
that needs only bits, where is the -th order
entropy and is the string length. Moreover our representation supports
extraction of a substring in optimal time
Signal transducer and activator of transcription 2 deficiency is a novel disorder of mitochondrial fission
Defects of mitochondrial dynamics are emerging causes of neurological disease. In two children presenting with severe neurological deterioration following viral infection we identified a novel homozygous STAT2 mutation, c.1836C4A (p.Cys612Ter), using whole exome sequencing. In muscle and fibroblasts from these patients, and a third unrelated STAT2-deficient patient, we observed extremely elongated mitochondria. Western blot analysis revealed absence of the STAT2 protein and that the mitochondrial fission protein DRP1 (encoded by DNM1L) is inactive, as shown by its phosphorylation state. All three patients harboured 15 decreased levels of DRP1 phosphorylated at serine residue 616 (P-DRP1S616), a post-translational modification known to activate DRP1, and increased levels of DRP1 phosphorylated at serine 637 (P-DRP1S637), associated with the inactive state of the DRP1 GTPase. Knockdown of STAT2 in SHSY5Y cells recapitulated the fission defect, with elongated mitochondria and decreased PDRP1 S616 levels. Furthermore the mitochondrial fission defect in patient fibroblasts was rescued following lentiviral transduction with wild-type STAT2 in all three patients, with normalization of mitochondrial length and increased P-DRP1S616 levels. Taken 20 together, these findings implicate STAT2 as a novel regulator of DRP1 phosphorylation at serine 616, and thus of mitochondrial fission, and suggest that there are interactions between immunity and mitochondria. This is the first study to link the innate immune system to mitochondrial dynamics and morphology. We hypothesize that variability in JAK-STAT signalling may contribute to the phenotypic heterogeneity of mitochondrial disease, and may explain why some patients with underlying mitochondrial disease decompensate after seemingly trivial viral infections. Modulating JAK-STAT activity may represent a novel 25 therapeutic avenue for mitochondrial diseases, which remain largely untreatable. This may also be relevant for more common neurodegenerative diseases, including Alzheimerâs, Huntingtonâs and Parkinsonâs diseases, in which abnormalities of mitochondrial morphology have been implicated in disease pathogenesis
- âŠ