35,881 research outputs found

    Kinetic modeling of Secondary Organic Aerosol formation: effects of particle- and gas-phase reactions of semivolatile products

    Get PDF
    The distinguishing mechanism of formation of secondary organic aerosol (SOA) is the partitioning of semivolatile hydrocarbon oxidation products between the gas and aerosol phases. While SOA formation is typically described in terms of partitioning only, the rate of formation and ultimate yield of SOA can also depend on the kinetics of both gas- and aerosol-phase processes. We present a general equilibrium/kinetic model of SOA formation that provides a framework for evaluating the extent to which the controlling mechanisms of SOA formation can be inferred from laboratory chamber data. With this model we examine the effect on SOA formation of gas-phase oxidation of first-generation products to either more or less volatile species, of particle-phase reaction (both first- and second-order kinetics), of the rate of parent hydrocarbon oxidation, and of the extent of reaction of the parent hydrocarbon. The effect of pre-existing organic aerosol mass on SOA yield, an issue of direct relevance to the translation of laboratory data to atmospheric applications, is examined. The importance of direct chemical measurements of gas- and particle-phase species is underscored in identifying SOA formation mechanisms

    Piezoelectric copolymer hydrophones for ultrasonic field characterization

    Get PDF
    Hydrophones to be used in the characterization of medical ultrasonic transducers have been fabricated using a new polyvinylidene fluoride/trifluoroethylene (VF2/VF3) copolymer. The copolymer has an advantage over VF2 in that it does not require prestretching before poling. Thin copolymer films can be cast from solution and then poled using the corona discharge method. As there is a need for small‐diameter hydrophones to provide good spatial resolution in measuring highly focused ultrasonic beams, hydrophones with diameter as small as 0.1 mm have been made. Both needle‐type and line hydrophones have been tested and their performance reported. In the case of line hydrophones, the output signal is proportional to the line integral of the acoustic pressure and a computer tomographic technique has been used to reconstruct the beam profiles

    Secondary organic aerosol formation from m-xylene, toluene, and benzene

    Get PDF
    Secondary organic aerosol (SOA) formation from the photooxidation of m-xylene, toluene, and benzene is investigated in the Caltech environmental chambers. Experiments are performed under two limiting NOx conditions; under high-NOx conditions the peroxy radicals (RO2) react only with NO, while under low-NOx conditions they react only with HO2. For all three aromatics studied (m-xylene, toluene, and benzene), the SOA yields (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) under low-NOx conditions substantially exceed those under high-NOx conditions, suggesting the importance of peroxy radical chemistry in SOA formation. Under low-NOx conditions, the SOA yields for m-xylene, toluene, and benzene are constant (36%, 30%, and 37%, respectively), indicating that the SOA formed is effectively nonvolatile under the range of Mo(>10 ÎŒg m−3) studied. Under high-NOx conditions, aerosol growth occurs essentially immediately, even when NO concentration is high. The SOA yield curves exhibit behavior similar to that observed by Odum et al. (1996, 1997a, b), although the values are somewhat higher than in the earlier study. The yields measured under high-NOx conditions are higher than previous measurements, suggesting a "rate effect" in SOA formation, in which SOA yields are higher when the oxidation rate is faster. Experiments carried out in the presence of acidic seed aerosol reveal no change of SOA yields from the aromatics as compared with those using neutral seed aerosol

    Yields of oxidized volatile organic compounds during the OH radical initiated oxidation of isoprene, methyl vinyl ketone, and methacrolein under high-NO_x conditions

    Get PDF
    We present first-generation and total production yields of glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone from the oxidation of isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) with OH under high NO_x conditions. Several of these first-generation yields are not included in commonly used chemical mechanisms, such as the Leeds Master Chemical Mechanism (MCM) v. 3.2. The first-generation yield of glyoxal from isoprene was determined to be 2.1 (±0.6)%. Inclusion of first-generation production of glyoxal, glycolaldehyde and hydroxyacetone from isoprene greatly improves performance of an MCM based model during the initial part of the experiments. In order to further improve performance of the MCM based model, higher generation glyoxal production was reduced by lowering the first-generation yield of glyoxal from C5 hydroxycarbonyls. The results suggest that glyoxal production from reaction of OH with isoprene under high NO_x conditions can be approximated by inclusion of a first-generation production term together with secondary production only via glycolaldehyde. Analogously, methylglyoxal production can be approximated by a first-generation production term from isoprene, and secondary production via MVK, MACR and hydroxyacetone. The first-generation yields reported here correspond to less than 5% of the total oxidized yield from isoprene and thus only have a small effect on the fate of isoprene. However, due to the abundance of isoprene, the combination of first-generation yields and reduced higher generation production of glyoxal from C5 hydroxycarbonyls is important for models that include the production of the small organic molecules from isoprene

    Analysis of photochemical and dark glyoxal uptake: Implications for SOA formation

    Get PDF
    The dependence of glyoxal uptake onto deliquesced ammonium sulfate seed aerosol was studied under photochemical (light + hydroxyl radical (OH)) and dark conditions. In this study, the chemical composition of aerosol formed from glyoxal is identical in the presence or absence of OH. In addition, there was no observed OH dependence on either glyoxal uptake or glyoxal-driven aerosol growth for this study. These findings demonstrate that, for the system used here, glyoxal uptake is not affected by the presence of OH. In combination with previous studies, this shows that the exact nature of the type of seed aerosol, in particular the presence of a coating, has a large influence on fast photochemical uptake of glyoxal. Due to the challenge of relating this seed aerosol dependence to ambient conditions, this work highlights the resulting difficulty in quantitatively including SOA formation from glyoxal in models

    The Dynamics of Charges Induced by a Charged Particle Traversing a Dielectric Slab

    Get PDF
    We studied the dynamics of surfacea and wake charges induced by a charged particle traversing a dielectric slab. It is shown that after the crossing of the slab first boundary, the induced on the slab surface charge (image charge) is transformed into the wake charge, which overflows to the second boundary when the particle crosses it. It is also shown, that the polarization of the slab is of an oscillatory nature, and the net induced charge in a slab remains zero at all stages of the motion.Comment: 12 pages, 1 figur

    Role of aldehyde chemistry and NO_x concentrations in secondary organic aerosol formation

    Get PDF
    Aldehydes are an important class of products from atmospheric oxidation of hydrocarbons. Isoprene (2-methyl-1,3-butadiene), the most abundantly emitted atmospheric non-methane hydrocarbon, produces a significant amount of secondary organic aerosol (SOA) via methacrolein (a C_4-unsaturated aldehyde) under urban high-NO_x conditions. Previously, we have identified peroxy methacryloyl nitrate (MPAN) as the important intermediate to isoprene and methacrolein SOA in this NO_x regime. Here we show that as a result of this chemistry, NO_2 enhances SOA formation from methacrolein and two other α, ÎČ-unsaturated aldehydes, specifically acrolein and crotonaldehyde, a NO_x effect on SOA formation previously unrecognized. Oligoesters of dihydroxycarboxylic acids and hydroxynitrooxycarboxylic acids are observed to increase with increasing NO_2/NO ratio, and previous characterizations are confirmed by both online and offline high-resolution mass spectrometry techniques. Molecular structure also determines the amount of SOA formation, as the SOA mass yields are the highest for aldehydes that are α, ÎČ-unsaturated and contain an additional methyl group on the α-carbon. Aerosol formation from 2-methyl-3-buten-2-ol (MBO232) is insignificant, even under high-NO_2 conditions, as PAN (peroxy acyl nitrate, RC(O)OONO_2) formation is structurally unfavorable. At atmospherically relevant NO_2/NO ratios (3–8), the SOA yields from isoprene high-NO_x photooxidation are 3 times greater than previously measured at lower NO_2/NO ratios. At sufficiently high NO_2 concentrations, in systems of α, ÎČ-unsaturated aldehydes, SOA formation from subsequent oxidation of products from acyl peroxyl radicals+NO_2 can exceed that from RO_2+HO_2 reactions under the same inorganic seed conditions, making RO_2+NO_2 an important channel for SOA formation

    The association between retinal vein ophthalmodynamometric force change and optic disc excavation

    Get PDF
    Aim: Retinal vein ophthalmodynamometric force (ODF) is predictive of future optic disc excavation in glaucoma, but it is not known if variation in ODF affects prognosis. We aimed to assess whether a change in ODF provides additional prognostic information. Methods: 135 eyes of 75 patients with glaucoma or being glaucoma suspects had intraocular pressure (IOP), visual fields, stereo optic disc photography and ODF measured on an initial visit and a subsequent visit at mean 82 (SD 7.3) months later. Corneal thickness and blood pressure were recorded on the latter visit. When venous pulsation was spontaneous, the ODF was recorded as 0 g. Change in ODF was calculated. Flicker stereochronoscopy was used to determine the occurrence of optic disc excavation, which was modelled against the measured variables using multiple mixed effects logistic regression. Results: Change in ODF (p=0.046) was associated with increased excavation. Average IOP (p=0.66) and other variables were not associated. Odds ratio for increased optic disc excavation of 1.045 per gram ODF change (95% CI 1.001 to 1.090) was calculated. Conclusion: Change in retinal vein ODF may provide additional information to assist with glaucoma prognostication and implies a significant relationship between venous change and glaucoma patho-physiology

    In situ observations of ClO in the Antarctic: Evidence for chlorine catalyzed destruction of ozone

    Get PDF
    Results from a series of 12 ER-2 aircraft flights into the Antarctic polar vortex are summarized. These in situ data define the spatial and temporal distribution of ClO as the aircraft flew at an altitude of approx. 18 km from Punta Arenas (54 deg S latitude) to the base of the Palmer Peninsula (72 deg S latitude), executed a rapid descent to approx. 13 km, turned north and climbed bach to approximately 18 km, returning to Punta Arenas. A general pattern in the ClO distribution is reported: mixing ratios of approximately 10 ppt are found at altitude in the vicinity of 55 deg S increasing to 50 ppt at 60 degrees S. In the vicinity of 65 deg S latitude a steep gradient in the ClO mixing ratio is observed. At a fixed potential temperature, the ClO mixing ratio through this sharp transition increases by an order of magnitude within a very few degrees of latitude, thus defining the edge of the chemical containment vessel. From the edge of that containment vessel to the southern extension of the flights, 72 deg S, a dome of slowly increasing ClO best describes the distribution. Conclusion are drawn from the data
    • 

    corecore