17,094 research outputs found

    Breathing FIRE: How Stellar Feedback Drives Radial Migration, Rapid Size Fluctuations, and Population Gradients in Low-Mass Galaxies

    Get PDF
    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (Mstar=2×1065×1010MM_{\rm star}=2\times10^6-5\times10^{10}{\rm M_{\odot}}) using the FIRE (Feedback in Realistic Environments) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate 1kpc\sim1{\rm\,kpc} within their first 100Myr100 {\rm\,Myr}, and (2) gas outflows/inflows drive strong fluctuations in the global potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies' effective radii can fluctuate by factors of >2>2 over 200Myr\sim200 {\rm\,Myr}, and these rapid size fluctuations can account for much of the observed scatter in radius at fixed Mstar.M_{\rm star}. Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes---and even inverts---intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star-formation histories from stellar populations at z=0z=0 can be severely biased. These effects are strongest at Mstar1079.6MM_{\rm star}\approx10^{7-9.6}{\rm M_{\odot}}, the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in Λ\LambdaCDM.Comment: Accepted to ApJ (820, 131) with minor revisions from v1. Figure 4 now includes dark matter. Main results in Figures 7 and 1

    The origin of ultra diffuse galaxies: stellar feedback and quenching

    Get PDF
    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies. We show that stellar feedback-generated outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching (from e.g. infall into a galaxy cluster), naturally reproduce the observed population of red UDGs, without the need for high spin halos or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed z=0 red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated galaxies with M_star ~1e8 Msun, low metallicity and a broad range of ages. The most massive simulated UDGs require earliest quenching and are therefore the oldest. Our simulations provide a good match to the central enclosed masses and the velocity dispersions of the observed UDGs (20-50 km/s). The enclosed masses of the simulated UDGs remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. A typical UDG forms in a dwarf halo mass range of Mh~4e10-1e11 Msun. The most massive red UDG in our sample requires quenching at z~3 when its halo reached Mh ~ 1e11 Msun. If it, instead, continues growing in the field, by z=0 its halo mass reaches > 5e11 Msun, comparable to the halo of an L* galaxy. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with mass-to-light ratios similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around Ms~1e8 Msun, both in the field and in clusters.Comment: 20 pages, 13 figures; match the MNRAS accepted versio

    Mapping and understanding the decision-making process for providing nutrition and hydration to people living with dementia: a systematic review

    Get PDF
    BACKGROUND: This systematic review aimed to explore the process of decision-making for nutrition and hydration for people living with dementia from the perspectives and experiences of all involved. METHODS: We searched CINAHL, the Cochrane Library, EMBASE, MEDLINE and PsycINFO databases. Search terms were related to dementia, decision-making, nutrition and hydration. Qualitative, quantitative and case studies that focused on decision-making about nutrition and hydration for people living with dementia were included. The CASP and Murad tools were used to appraise the quality of included studies. Data extraction was guided by the Interprofessional Shared Decision Making (IP-SDM) model. We conducted a narrative synthesis using thematic analysis. PROSPERO registration number CRD42019131497. RESULTS: Forty-five studies were included (20 qualitative, 15 quantitative and 10 case studies), comprising data from 17 countries and 6020 patients, family caregivers and practitioners. The studies covered a range of decisions from managing oral feeding to the use of tube feeding. We found that decisions about nutrition and hydration for people living with dementia were generally too complex to be mapped onto the precise linear steps of the existing decision-making model. Decision-making processes around feeding for people living with dementia were largely influenced by medical evidence, personal values, cultures and organizational routine. Although the process involved multiple people, family caregivers and non-physician practitioners were often excluded in making a final decision. Upon disagreement, nutrition interventions were sometimes delivered with conflicting feelings concealed by family caregivers or practitioners. Most conflicts and negative feelings were resolved by good relationship, honest communication, multidisciplinary team meetings and renegotiation. CONCLUSIONS: The decision-making process regarding nutrition and hydration for people living with dementia does not follow a linear process. It needs an informed, value-sensitive, and collaborative process. However, it often characterized by unclear procedures and with a lack of support. Decisional support is needed and should be approached in a shared and stepwise manner

    Throughput Maximization in Multiprocessor Speed-Scaling

    Full text link
    We are given a set of nn jobs that have to be executed on a set of mm speed-scalable machines that can vary their speeds dynamically using the energy model introduced in [Yao et al., FOCS'95]. Every job jj is characterized by its release date rjr_j, its deadline djd_j, its processing volume pi,jp_{i,j} if jj is executed on machine ii and its weight wjw_j. We are also given a budget of energy EE and our objective is to maximize the weighted throughput, i.e. the total weight of jobs that are completed between their respective release dates and deadlines. We propose a polynomial-time approximation algorithm where the preemption of the jobs is allowed but not their migration. Our algorithm uses a primal-dual approach on a linearized version of a convex program with linear constraints. Furthermore, we present two optimal algorithms for the non-preemptive case where the number of machines is bounded by a fixed constant. More specifically, we consider: {\em (a)} the case of identical processing volumes, i.e. pi,j=pp_{i,j}=p for every ii and jj, for which we present a polynomial-time algorithm for the unweighted version, which becomes a pseudopolynomial-time algorithm for the weighted throughput version, and {\em (b)} the case of agreeable instances, i.e. for which rirjr_i \le r_j if and only if didjd_i \le d_j, for which we present a pseudopolynomial-time algorithm. Both algorithms are based on a discretization of the problem and the use of dynamic programming

    A Chimeric Nucleobase - Phenylazo Derivative as an Intrinsic Nucleobase Quencher

    Get PDF
    Molecular beacons are important bioanalytical probes which are most often constructed from a single-stranded oligonucleotide which has been labeled at opposite termini with a fluorophore and a quencher. When the fluorophore and quencher are in close proximity, no fluorescence is observed due to FRET (Fluorescence Resonance Energy Transfer). DABCYL (4-dimethylaminoazobenzene- 4\u27-carboxylic acid) has been used as a quencher in the molecular beacon to absorbs excitation energy from a fluorophore and to dissipate the energy as heat. However, DABCYL is unable to form a base-pair and is conventionally placed as an overhanging residue. This produces a derivative wherein the chromophore has substantial mobility and limits the types of other conjugates that can be prepared. In order to overcome these limitations, we have embarked on the synthesis of deoxyribonucleoside and peptide nucleic acid (PNA) analogue possessing DMPAU (5-[(4-dimethylaminophenyl) diazenyl]uracil) as the nucleobase. DMPAU has DABCYL-like properties due to the installation of an azo moiety at the 5-position of the uracil base. This base is designed to have the ability to form a complementary base pair with adenosine by canonical hydrogen bonding and also to quench the fluorescence emission in a molecular beacon construct. Both DMPAUridine and DMPAU PNA analogue are determined to have same UV-Vis absorbance ranges as DABCYL and reasonable quenching effect to the fluorophore

    Effect of water-in-oil microemulsions and lamellar liquid crystalline systems on the precorneal tear film of albino New Zealand rabbits

    Get PDF
    The aim of this study is to investigate the effect of phase transition water-in-oil (w/o) microemulsions (ME) and liquid crystalline systems (LC) on the precorneal tear film (PCTF). The study used six albino NZ rabbits and monitored the integrity and stability of the PCTF before and after instillation of test formulations. The effects were evaluated by assessment of the PCTF lipid layer using interferometry, tear evaporation rate measurements, and indirect estimation of tear volume. Ocular application of test formulations changed the appearance of the PCTF lipid layer, indicating lipid layer disruption. The recovery time was longer in case of ME compared with an aqueous solution (SOL). The tear evaporation rate was increased after application of both ME and LC systems compared with the SOL, with the LC system showing the greatest effect. Tear volume measurement results revealed minimal changes associated with the instillation of both ME systems. Whilst phase transition w/o ME systems can interact with the PCTF lipid layer in albino New Zealand rabbits, their effect on the volume of resident tears was found to be minimal

    Cytotoxic Effects of CdSe Quantum Dots on Maturation of Mouse Oocytes, Fertilization, and Fetal Development

    Get PDF
    Quantum dots (QDs) are useful novel luminescent markers, but their embryonic toxicity is yet to be fully established, particularly in oocyte maturation and sperm fertilization. Earlier experiments by our group show that CdSe-core QDs have cytotoxic effects on mouse blastocysts and are associated with defects in subsequent development. Here, we further investigate the influence of CdSe-core QDs on oocyte maturation, fertilization, and subsequent pre- and postimplantation development. CdSe-core QDs induced a significant reduction in the rates of oocyte maturation, fertilization, and in vitro embryo development, but not ZnS-coated CdSe QDs. Treatment of oocytes with 500 nM CdSe-core QDs during in vitro maturation (IVM) led to increased resorption of postimplantation embryos and decreased placental and fetal weights. To our knowledge, this is the first study to report the negative impact of CdSe-core QDs on mouse oocyte development. Moreover, surface modification of CdSe-core QDs with ZnS effectively prevented this cytotoxicity

    Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma

    Get PDF
    Immune checkpoint inhibitors (ICIs) have reshaped cancer therapy. ICIs enhance T cell activation through various mechanisms and may help reverse the exhausted phenotype of tumour-infiltrating lymphocytes. However, disrupting the key role that checkpoint molecules play in immune homeostasis may result in autoimmune complications. A broad range of immune-related adverse events (irAEs) involve almost every organ but mostly affect the skin, digestive system, lung, endocrine glands, nervous system, kidney, blood cells, and musculoskeletal system. They are usually manageable but can be life-threatening. The incidence of irAEs is not very different in patients with hepatocellular carcinoma (HCC) compared to other tumour types, although there is a trend towards a higher incidence of hepatic irAEs. HCC usually develops on a background of cirrhosis with associated systemic manifestations. Extrahepatic organ dysfunction in cirrhosis may cause signs and symptoms that overlap with irAEs or increase their severity. Available guidelines for the management of irAEs have not specifically considered the assessment of toxicities in the context of patients with liver cancer and cirrhosis. This review addresses the toxicity profile of ICIs in patients with HCC, focusing on the challenges that the underlying liver disease poses to their diagnosis and management. Challenges include late recognition, inadequate work-up and delayed treatment, overdiagnosis and inappropriate interruption of ICIs, complications caused by immunosuppressive therapy, and increased cost. A specific algorithm for the management of hepatic irAEs is provided
    corecore