1,077 research outputs found
An ARIMA-Intervention Analysis Model for the Financial Crisis in Chinaâs Manufacturing Industry
Triggered by the subprime mortgage crisis in the United States (U.S.), a financial tsunami has spread rapidly around the globe, from the U.S. to Europe and the rest of the world, causing the world economy to enter a recession. China is no exception, and has suffered a sharp reduction in the growth of its export and manufacturing sectors. In this paper, we attempt to model and analyze the impact of financial crisis on the manufacturing industry in China using data collected from March 2005 to November 2008 by the China Statistical Databases of the National Bureau of Statistics of China. The results indicate that Chinaâs manufacturing industry may have to tolerate a significant negative effect caused by the global financial crisis over a period of time, with its gross industrial output value declining continually throughout 2008 and 2009 before reaching a state of equilibrium. The intervention effect is described in this study as temporary but immediate and abrupt. It is found that the ARIMA-Intervention model is more precise at explaining and analyzing the intervention effects of the financial tsunami
de Sitter String Vacua from Supersymmetric D-terms
We propose a new mechanism for obtaining de Sitter vacua in type IIB string
theory compactified on (orientifolded) Calabi-Yau manifolds similar to those
recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum
appears in KKLT model after uplifting an AdS vacuum by adding an anti-D3-brane,
which explicitly breaks supersymmetry. We accomplish the same goal by adding
fluxes of gauge fields within the D7-branes, which induce a D-term potential in
the effective 4D action. In this way we obtain dS space as a spontaneously
broken vacuum from a purely supersymmetric 4D action. We argue that our
approach can be directly extended to heterotic string vacua, with the dilaton
potential obtained from a combination of gaugino condensation and the D-terms
generated by anomalous U(1) gauge groups.Comment: 17 pages, 1 figur
General Brane Geometries from Scalar Potentials: Gauged Supergravities and Accelerating Universes
We find broad classes of solutions to the field equations for d-dimensional
gravity coupled to an antisymmetric tensor of arbitrary rank and a scalar field
with non-vanishing potential. Our construction generates these configurations
from the solution of a single nonlinear ordinary differential equation, whose
form depends on the scalar potential. For an exponential potential we find
solutions corresponding to brane geometries, generalizing the black p-branes
and S-branes known for the case of vanishing potential. These geometries are
singular at the origin with up to two (regular) horizons. Their asymptotic
behaviour depends on the parameters of the model. When the singularity has
negative tension or the cosmological constant is positive we find
time-dependent configurations describing accelerating universes. Special cases
give explicit brane geometries for (compact and non-compact) gauged
supergravities in various dimensions, as well as for massive 10D supergravity,
and we discuss their interrelation. Some examples lift to give new solutions to
10D supergravity. Limiting cases with a domain wall structure preserve part of
the supersymmetries of the vacuum. We also consider more general potentials,
including sums of exponentials. Exact solutions are found for these with up to
three horizons, having potentially interesting cosmological interpretation. We
give several additional examples which illustrate the power of our techniques.Comment: 54 pages, 6 figures. Uses JHEP3. Published versio
Flux Compactifications on Calabi-Yau Threefolds
The presence of RR and NS three-form fluxes in type IIB string
compactification on a Calabi-Yau orientifold gives rise to a nontrivial
superpotential W for the dilaton and complex structure moduli. This
superpotential is computable in terms of the period integrals of the Calabi-Yau
manifold. In this paper, we present explicit examples of both supersymmetric
and nonsupersymmetric solutions to the resulting 4d N=1 supersymmetric no-scale
supergravity, including some nonsupersymmetric solutions with relatively small
values of W. Our examples arise on orientifolds of the hypersurfaces in
and . They serve as explicit
illustrations of several of the ingredients which have played a role in the
recent proposals for constructing de Sitter vacua of string theory.Comment: 30 pages, harvmac big; refs and minor comments adde
Dynamics and Scaling of 2D Polymers in a Dilute Solution
The breakdown of dynamical scaling for a dilute polymer solution in 2D has
been suggested by Shannon and Choy [Phys. Rev. Lett. {\bf 79}, 1455 (1997)].
However, we show here both numerically and analytically that dynamical scaling
holds when the finite-size dependence of the relevant dynamical quantities is
properly taken into account. We carry out large-scale simulations in 2D for a
polymer chain in a good solvent with full hydrodynamic interactions to verify
dynamical scaling. This is achieved by novel mesoscopic simulation techniques
Quasi-Normal Modes of Schwarzschild Anti-De Sitter Black Holes: Electromagnetic and Gravitational Perturbations
We study the quasi-normal modes (QNM) of electromagnetic and gravitational
perturbations of a Schwarzschild black hole in an asymptotically Anti-de Sitter
(AdS) spacetime. Some of the electromagnetic modes do not oscillate, they only
decay, since they have pure imaginary frequencies. The gravitational modes show
peculiar features: the odd and even gravitational perturbations no longer have
the same characteristic quasinormal frequencies. There is a special mode for
odd perturbations whose behavior differs completely from the usual one in
scalar and electromagnetic perturbation in an AdS spacetime, but has a similar
behavior to the Schwarzschild black hole in an asymptotically flat spacetime:
the imaginary part of the frequency goes as 1/r+, where r+ is the horizon
radius. We also investigate the small black hole limit showing that the
imaginary part of the frequency goes as r+^2. These results are important to
the AdS/CFT conjecture since according to it the QNMs describe the approach to
equilibrium in the conformal field theory.Comment: 2 figure
Ricci-flat K\"ahler metrics on crepant resolutions of K\"ahler cones
We prove that a crepant resolution of a Ricci-flat K\"ahler cone X admits a
complete Ricci-flat K\"ahler metric asymptotic to the cone metric in every
K\"ahler class in H^2_c(Y,R). This result contains as a subcase the existence
of ALE Ricci-flat K\"ahler metrics on crepant resolutions of X=C^n /G, where G
is a finite subgroup of SL(n,C).
We consider the case in which X is toric. A result of A. Futaki, H. Ono, and
G. Wang guarantees the existence of a Ricci-flat K\"ahler cone metric if X is
Gorenstein. We use toric geometry to construct crepant resolutions.Comment: 26 pages. Accepted for publication in Mathematische Annale
Cosmological solutions in multidimensional model with multiple exponential potential
A family of cosmological solutions with Ricci-flat spaces in the
theory with several scalar fields and multiple exponential potential is
obtained when coupling vectors in exponents obey certain relations. Two
subclasses of solutions with power-law and exponential behaviour of scale
factors are singled out. It is proved that power-law solutions may take place
only when coupling vectors are linearly independent and exponential dependence
occurs for linearly dependent set of coupling vectors. A subfamily of solutions
with accelerated expansion is singled out. A generalized isotropization
behaviours of certain classes of general solutions are found. In quantum case
exact solutions to Wheeler-DeWitt equation are obtained and special "ground
state" wave functions are considered.Comment: 22 pages, 1 figur
Moduli Stabilization from Fluxes in a Simple IIB Orientifold
We study novel type IIB compactifications on the T^6/Z_2 orientifold. This
geometry arises in the T-dual description of Type I theory on T^6, and one
normally introduces 16 space-filling D3-branes to cancel the RR tadpoles. Here,
we cancel the RR tadpoles either partially or fully by turning on three-form
flux in the compact geometry. The resulting (super)potential for moduli is
calculable. We demonstrate that one can find many examples of N=1
supersymmetric vacua with greatly reduced numbers of moduli in this system. A
few examples with N>1 supersymmetry or complete supersymmetry breaking are also
discussed.Comment: 49 pages, harvmac big; v2, corrected some typo
- âŠ