32,289 research outputs found

    Archetypal analysis of galaxy spectra

    Get PDF
    Archetypal analysis represents each individual member of a set of data vectors as a mixture (a constrained linear combination) of the pure types or archetypes of the data set. The archetypes are themselves required to be mixtures of the data vectors. Archetypal analysis may be particularly useful in analysing data sets comprising galaxy spectra, since each spectrum is, presumably, a superposition of the emission from the various stellar populations, nebular emissions and nuclear activity making up that galaxy, and each of these emission sources corresponds to a potential archetype of the entire data set. We demonstrate archetypal analysis using sets of composite synthetic galaxy spectra, showing that the method promises to be an effective and efficient way to classify spectra. We show that archetypal analysis is robust in the presence of various types of noise.Comment: 6 pages, 5 figures, 1 style-file. Accepted for publication by MNRA

    Archetypal Analysis: Mining Weather and Climate Extremes

    Get PDF
    Conventional analysis methods in weather and climate science (e.g., EOF analysis) exhibit a number of drawbacks including scaling and mixing. These methods focus mostly on the bulk of the probability distribution of the system in state space and overlook its tail. This paper explores a different method, the archetypal analysis (AA), which focuses precisely on the extremes. AA seeks to approximate the convex hull of the data in state space by finding “corners” that represent “pure” types or archetypes through computing mixture weight matrices. The method is quite new in climate science, although it has been around for about two decades in pattern recognition. It encompasses, in particular, the virtues of EOFs and clustering. The method is presented along with a new manifold-based optimization algorithm that optimizes for the weights simultaneously, unlike the conventional multistep algorithm based on the alternating constrained least squares. The paper discusses the numerical solution and then applies it to the monthly sea surface temperature (SST) from HadISST and to the Asian summer monsoon (ASM) using sea level pressure (SLP) from ERA-40 over the Asian monsoon region. The application to SST reveals, in particular, three archetypes, namely, El Niño, La Niña, and a third pattern representing the western boundary currents. The latter archetype shows a particular trend in the last few decades. The application to the ASM SLP anomalies yields archetypes that are consistent with the ASM regimes found in the literature. Merits and weaknesses of the method along with possible future development are also discussed

    In-vivo magnetic resonance imaging of hyperpolarized silicon particles

    Full text link
    Silicon-based micro and nanoparticles have gained popularity in a wide range of biomedical applications due to their biocompatibility and biodegradability in-vivo, as well as a flexible surface chemistry, which allows drug loading, functionalization and targeting. Here we report direct in-vivo imaging of hyperpolarized 29Si nuclei in silicon microparticles by MRI. Natural physical properties of silicon provide surface electronic states for dynamic nuclear polarization (DNP), extremely long depolarization times, insensitivity to the in-vivo environment or particle tumbling, and surfaces favorable for functionalization. Potential applications to gastrointestinal, intravascular, and tumor perfusion imaging at sub-picomolar concentrations are presented. These results demonstrate a new background-free imaging modality applicable to a range of inexpensive, readily available, and biocompatible Si particles.Comment: Supplemental Material include

    Mass Hierarchy, Mixing, CP-Violation and Higgs Decay---or Why Rotation is Good for Us

    Get PDF
    The idea of a rank-one rotating mass matrix (R2M2) is reviewed detailing how it leads to ready explanations both for the fermion mass hierarchy and for the distinctive mixing patterns between up and down fermion states, which can be and have been tested against experiment and shown to be fully consistent with existing data. Further, R2M2 is seen to offer, as by-products: (i) a new solution of the strong CP problem in QCD by linking the theta-angle there to the Kobayashi-Maskawa CP-violating phase in the CKM matrix, and (ii) some novel predictions of possible anomalies in Higgs decay observable in principle at the LHC. A special effort is made to answer some questions raised.Comment: 47 pages, 9 figure

    The Dynamics of Charges Induced by a Charged Particle Traversing a Dielectric Slab

    Get PDF
    We studied the dynamics of surfacea and wake charges induced by a charged particle traversing a dielectric slab. It is shown that after the crossing of the slab first boundary, the induced on the slab surface charge (image charge) is transformed into the wake charge, which overflows to the second boundary when the particle crosses it. It is also shown, that the polarization of the slab is of an oscillatory nature, and the net induced charge in a slab remains zero at all stages of the motion.Comment: 12 pages, 1 figur

    An Algebra of Pieces of Space -- Hermann Grassmann to Gian Carlo Rota

    Full text link
    We sketch the outlines of Gian Carlo Rota's interaction with the ideas that Hermann Grassmann developed in his Ausdehnungslehre of 1844 and 1862, as adapted and explained by Giuseppe Peano in 1888. This leads us past what Rota variously called 'Grassmann-Cayley algebra', or 'Peano spaces', to the Whitney algebra of a matroid, and finally to a resolution of the question "What, really, was Grassmann's regressive product?". This final question is the subject of ongoing joint work with Andrea Brini, Francesco Regonati, and William Schmitt. The present paper was presented at the conference "The Digital Footprint of Gian-Carlo Rota: Marbles, Boxes and Philosophy" in Milano on 17 Feb 2009. It will appear in proceedings of that conference, to be published by Springer Verlag.Comment: 28 page

    Scale-free networks with tunable degree distribution exponents

    Full text link
    We propose and study a model of scale-free growing networks that gives a degree distribution dominated by a power-law behavior with a model-dependent, hence tunable, exponent. The model represents a hybrid of the growing networks based on popularity-driven and fitness-driven preferential attachments. As the network grows, a newly added node establishes mm new links to existing nodes with a probability pp based on popularity of the existing nodes and a probability 1p1-p based on fitness of the existing nodes. An explicit form of the degree distribution P(p,k)P(p,k) is derived within a mean field approach. For reasonably large kk, P(p,k)kγ(p)F(k,p)P(p,k) \sim k^{-\gamma(p)}{\cal F}(k,p), where the function F{\cal F} is dominated by the behavior of 1/ln(k/m)1/\ln(k/m) for small values of pp and becomes kk-independent as p1p \to 1, and γ(p)\gamma(p) is a model-dependent exponent. The degree distribution and the exponent γ(p)\gamma(p) are found to be in good agreement with results obtained by extensive numerical simulations.Comment: 12 pages, 2 figures, submitted to PR
    corecore