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ABSTRACT

Conventional analysis methods in weather and climate science (e.g., EOF analysis) exhibit a number of

drawbacks including scaling and mixing. These methods focus mostly on the bulk of the probability distri-

bution of the system in state space and overlook its tail. This paper explores a differentmethod, the archetypal

analysis (AA), which focuses precisely on the extremes. AA seeks to approximate the convex hull of the data

in state space by finding ‘‘corners’’ that represent ‘‘pure’’ types or archetypes through computing mixture

weight matrices. The method is quite new in climate science, although it has been around for about two

decades in pattern recognition. It encompasses, in particular, the virtues of EOFs and clustering. The method

is presented along with a new manifold-based optimization algorithm that optimizes for the weights simul-

taneously, unlike the conventional multistep algorithm based on the alternating constrained least squares.

The paper discusses the numerical solution and then applies it to the monthly sea surface temperature (SST)

from HadISST and to the Asian summer monsoon (ASM) using sea level pressure (SLP) from ERA-40 over

the Asian monsoon region. The application to SST reveals, in particular, three archetypes, namely, El Niño,
La Niña, and a third pattern representing the western boundary currents. The latter archetype shows a

particular trend in the last few decades. The application to the ASM SLP anomalies yields archetypes that are

consistent with the ASM regimes found in the literature. Merits and weaknesses of the method along with

possible future development are also discussed.

1. Introduction

Weather and climate data are witnessing an explosion

in size from both observations and climate models, and

as such various decomposition approaches are required

to explore and analyze these large-scale data. One of the

methods most used in weather and climate is empirical

orthogonal function (EOF) analysis (Obukov 1947;

Lorenz 1956), also known as principal component (PC)

analysis. The EOFmethod seeks to decompose a space–

time dataset into orthogonal EOF patterns and associ-

ated uncorrelated time series or PCs by maximizing the

explained variance (Jolliffe 2002; Hannachi et al. 2007;

Monahan et al. 2009). Other closely related methods

have also been used in atmospheric science (see, e.g.,

Jolliffe 2002; Hannachi et al. 2007; Wilks 2006). As will

be discussed later these methods do not analyze ex-

tremes in any particular way. In this paper we present a

relatively new method in climate research, the arche-

typal analysis (AA), whose most important feature is

dealing precisely with extremes. AA is a pattern rec-

ognition method that finds points on the envelope of the

data byminimizing a specific residual function. To better

present AAwe discuss it below within the context of the

conventional methods.

The EOF method, like other techniques, has advan-

tages and drawbacks, which we discuss briefly for conve-

nience and, as a baseline background, to help understand

the proposed technique in what follows. For example, the

geometrical constraints, such as mixing and scaling (see,

e.g., Hannachi et al. 2006; Hannachi 2007), impose limi-

tations to what EOFs can achieve. By construction, EOFs

are directions in state space and have no particular units

and cannot therefore be compared directly to the actual
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observations (the scaling problem). Only in a few cases

can the EOFs be interpreted easily (in a probabilistic

sense), and that is when the data are ‘‘well behaved’’ (e.g.,

normally distributed; see, e.g., Jolliffe 2002). The mixing

problem is related to the fact that EOFs tend to mix

physical patterns in order to maximize variance (e.g.,

Dommenget and Latif 2003; Mestas-Nuñez 2000). A

commonmethod to overcome this is to use rotated EOFs

(e.g., Wilks 2006; Hannachi et al. 2007), where a set of

EOFs are rotated by maximizing a certain ‘‘simplicity’’

criterion to make the rotated EOFs more local. Another

method was presented recently, namely, regularized

EOFs (Hannachi 2016). The method overcomes the

drawbacks of spatiotemporal orthogonality by solving a

generalized eigenvalue problem and helps, in particular,

overcome the mixing problem related to the leading

mode of variability of sea level pressure anomalies (i.e.,

the North Atlantic Oscillation vs the Arctic Oscillation;

see, e.g., Ambaum et al. 2001).

On the other hand EOFs are quite flexible. This

flexibility comes with a price, namely the interpretation

(Morup and Hansen 2012), owing to, for example, the

existence of efficient algorithms such as the singular

value decomposition (SVD) and their nested nature.

The latter refers to the fact that EOFs can be ordered

naturally, where the set of the leading N EOFs are a

subset of the set of the leading M EOFs for M.N.

One way to get feature patterns that are similar to the

measured data, and therefore lend themselves to an easy

interpretation, is through clustering such as the k-means

method, which attempts to identify clusters or equiva-

lently the most representative, or typical prototype, en-

tity. This is perhaps one of the most important features of

clustering methods, which comes with a price, namely

inflexibility related to the binary assignment of the data

objects. There are other methods to identify clusters or

regimes, notably those that are based on identifying re-

gions of high density in state space via finding peaks in the

system probability density function (pdf; e.g., Robertson

and Ghil 1999; Hannachi and Turner 2013, hereafter

HT13; Christiansen 2003) and mixture models (e.g.,

Hannachi 2010; Christiansen 2007). For more references

and further details on this topic the reader is referred to

the recent review of Hannachi et al. (2017). Similar to

what we mentioned above, clustering is not the main fo-

cus here but is used to help understand the AA method

(Morup andHansen 2012). In clustering, for example, the

original observations cannot be obtained as a direct

combination of the cluster centroids. Note that this is also

the case for EOF analysis, where it is not required that

observations be approximated as a mixture (i.e., convex

combination; with positive weights adding up to one) of

the mode patterns nor that the EOF patterns resemble

the data (Cutler and Breiman 1994; Chan et al. 2003).

Note also that using simple linear combinations (i.e., with

positive and negative weights) can lead to states outside

the data domain and is only useful for identifying di-

rections not locations in state space. The advantage of

positive weights (i.e., convex combination) is that they

provide ‘‘physical’’ states within the data domain. It is

perhaps important to recall here, and as outlined above,

that EOFs and clustering do not treat extreme data in any

special way. The study of extremes is indeed quite im-

portant in weather/climate research because of their im-

pact on the environment, society, and infrastructure (see,

e.g., Sura and Hannachi 2015; Sura 2011).

Therefore, expressing the decomposition modes (or

basis vectors) directly in terms of the original variables

and dealing particularly with extremes in the data are

two desirable features that the climate scientist would

like to have in any decomposition or analysis approach.

AA, suggested by Cutler and Breiman (1994), attempts

precisely to achieve this. In their original paper Cutler

and Breiman (1994) introduced AA as an intermediate

approach between, while combining the virtues of,

clustering and PC analysis. As its name suggests, AA

seeks to approximate the data in terms of ‘‘pure types,’’

or archetypes, which are themselves required to be a

mixture of the observations.

The archetypes are obtained by estimating the convex

hull or envelope of the data and are therefore charac-

terized by features favoring representative corners of

the data. AA has been applied mostly in pattern rec-

ognition, benchmarking and market research, physics

(astronomy spectra), computer vision and neuro-

imaging, and biology. AA, however, is not well known in

atmospheric research. In fact, the first application of AA

in climate research was only introduced very recently by

Steinschneider and Lall (2015), who applied it to daily

precipitation in the United States.

This paper is an attempt to present AA to the climate

community so that it may be explored alongside other

conventional approaches to get themost out of large-scale

weather and climate data. Our overall intention here is to

present AA as a new tool that can help us learn a different

facet of climate data. We perceive AA as a data com-

pression tool suitable for pattern recognition, which may

also shed some light on clustering of climate data. The

manuscript is organized as follows. Section 2 provides a

short review of AA. Section 3 describes briefly the algo-

rithm used in the literature and summarizes the algorithm

used in this paper to approximate thearchetypes (section3a)

and its application to generated data (section 3b). Most

technical details are provided in the supplemental mate-

rial. Readers that are not familiar with technical back-

ground can skip section 3a. An application to sea surface
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temperature (SST) and Asian summer monsoon is then

presented in section 4. The robustness and general issues

of sensitivity of themethod in both the generated samples

and climate data are discussed in section 5. A summary

and conclusions are provided in the last section.

2. Archetypal analysis

a. The AA problem

To introduce the AA problem, it is convenient and

helpful to briefly recall the conventional analysis

tool, namely EOF analysis. Given an n3m (anomaly)

data matrix X5 (xij) containing n observations in an

m-dimensional space xk 5 (xk1, . . . , xkm)
T, k5 1, . . . , n

(i.e., X5 [x1, . . . , xn]
T), conventional EOF analysis seeks

linear combinations of the variables [i.e., Xu, with

u 5 (u1, . . . ,um)
T] that maximize variance fi.e.,

max[(Xu)T(Xu)]g, leading to an eigenvalue problem:

XTXu5 lu . (1)

Equation (1) shows clearly that there is no requirement

for the eigenvector to directly relate or resemble the

original observations or any combination of them.

Unlike EOF analysis AA finds ‘‘typical’’ patterns

z1, . . . , zp (locations in state space) ‘‘resembling’’ the

original observations, used as basis vectors to approxi-

mate, through a mixture or convex combination, the

data matrix by minimizing the residuals Res:

Res5�
n

t51

�����xt 2 �
p

k51

a
kt
z
k

�����
2

. (2)

Themixture coefficients in Eq. (2) are required to satisfy

a
jt
$ 0, t5 1, . . . , n and j5 1, . . . , p

�
p

k51

a
kt
5 1, t5 1, . . . ,n. (3)

The patterns z1, . . . , zp are the archetypes. They them-

selves are required to be also convex combination of the

original observations; that is,

z
k
5 �

n

t51

b
tk
x
t
,

b
tk
$ 0 and �

n

t51

b
tk
5 1. (4)

The archetypes and the mixture weights are normally

expressed, respectively, in terms of them3 p, p3 n, and

n3 p matrices as follows:

Z5 [z
1
, . . . , z

p
], A5 (a

ij
), and B5 (b

lk
) . (5)

The AA problem is then cast in terms of the following

optimization problem:

fA,Bg5 argmin
A,B

kX2ATBTXk2F , (6)

subject to the convex (or stochasticity) constraints, given

by

A,B$ 0, AT1
p
5 1

n
, and BT1

n
5 1

p
, (7)

where 1r 5 (1, . . . , 1)T is the vector of ones in r di-

mensions. In Eq. (6) the notation k�kF stands for the

Frobenius matrix norm given by

kYk2F 5 tr(YYT) , (8)

where tr(�) is the trace operator. For a given p, Eq. (6)

yields the stochastic matrices A and B. The archetypes

Z5 [z1, . . . , zp] are then given by

Z5XTB . (9)

Equation (4) along with the optimization problem

[Eq. (6)] reveal that the archetypes are directly related

to the observations and can therefore provide an easier

interpretation compared to, for example, EOFs and

closely related methods. Precisely, and unlike EOFs,

Eq. (4) says that the archetypes are convex combina-

tions of the observations. In addition, the observations

themselves are also approximately a convex combina-

tion of the archetypes. The latter is somehow akin to

EOFs except that the weights are not convex.

b. Geometrical interpretation of the archetypes

AA minimizes the residual sum of squares (RSS) R:

R5 kX2ATBTXk2F , (10)

with the archetypes being a convex combination of the

observations. For a given p Cutler and Breiman (1994)

show that the (exact or global) minimizers of RSS R
[Eq. (10)] provide archetypes Z5 [z1, . . . , zp] that are

located on the boundary of the convex hull (or enve-

lope) of the data. The convex hull of a given data point is

the smallest convex set containing the data point. Ar-

chetypes therefore provide typical representations of

the ‘‘corners’’ or extremes of the observations.

Figure 1 shows a simple illustration (with no compu-

tation involved) of a two-dimensional example of a set

of points with its convex hull and its approximation us-

ing five archetypes. The figure shows a set of two di-

mensional points, and the convex hull is also shown by

dashed lines. An illustration of an approximate convex

hull with five archetypes (vertices) is also shown. The

dots inside this approximate hull, colored with red, do

not contribute to the residual sum of squares but only
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the dots outside (colored with blue). Note also that the

approximate archetypes are not necessarily located on

the edge of the convex hull as it is not known a priori and

has to be approximated.1 The samplemean x5 (1/n)�xt
provides the unique archetype for p5 1, and that for

p5 2 the pattern z2 2 z1 coincides with the leading EOF

of the data. Unlike EOFs archetypes are not required to

be nested (Cutler and Breiman 1994; Bauckhage and

Thurau 2009). However, like k-means clustering (and

unlike EOFs) AA is invariant to translation and scaling

and to rotational ambiguity (Morup and Hansen 2012).

A particularly nice, and unique, feature of AA is that

it allows visualizing high-dimensional data on a two-

dimensional plot using simplex visualization (Seth and

Eugster 2016). The p3 n weight matrix A5 [a1, . . . , an]

is a probability matrix (i.e., A $ 0 and AT1p 5 1n).

Therefore, the points Zat, t5 1, . . . , n, of the datamatrix

ATBTX5ATZT reside on a (p2 1) simplex2 and can be

projected onto the two-dimensional plane via a skew

orthogonal projection (Coexeter 1973) also known as a

Petrie polygon (Fig. 2). In this projection the vertices

represent the simplex vertices (i.e., archetypes here).

One of the attractive features of this projection operator

is that it allows any simplex, with any dimension, to be

represented by a (two dimensional) circle containing its

vertices and all the vertex pairs are connected by edges.

This projection can be useful particularly in the context

of clustering.

Another nice feature of AA, owing to the convex

combination, is the probabilistic interpretation of the

weights A5 (aij). Because A is a probability matrix

(aij $ 0 and�iaij 5 1), it permits a (soft) classification of

the observation xt to one of the archetypes based on the

membership probability aij 5Pr(zi j xj) of xj to archetype

zi. So AA may be used in a number of cases as a clus-

tering tool. But one should keep in mind that archetypes

represent corners rather than centroids found in con-

ventional clustering methods.

To recap, AA attempts to identify prototypes of the

data extremes residing on the convex hull. They are a

convex combination of the data, and the data themselves

are approximated by a convex combination of the ar-

chetypes. For clustered data the archetypes may be as-

sociated with the clusters, particularly if the latter are

located near the data border but are distinct from the

cluster centroids.

3. Numerical solution of archetypes

a. Manifold-based algorithm

Most methods used to solve the AA problem (e.g.,

Seth and Eugster 2016; Morup and Hansen 2012; Porzio

et al. 2008; Bauckhage and Thurau 2009; Steinschneider

and Lall 2015; Chan et al. 2003) are essentially based on

the original alternating constrained least squares algo-

rithm of Cutler and Breiman (1994). The algorithm al-

ternates between finding the optimal matrixA5 (aij) for

fixed archetypes Z and finding the optimal archetypes Z

for fixed A. The algorithm has essentially four steps:

1) Determine A, for fixed Z, by solving a constrained

least squares problem

2) Use the obtained A, from step 1, to solve for the

archetypes ZA5XT [i.e., Z5XTAT(AAT)21]

3) Use the obtained archetypes, from step 2, to estimate

the matrix B again by solving a constrained least

squares problem

4) Obtain an update of Z through Z5XTB, then go to

step 1 unless the residual sum of squares is smaller

than a prescribed threshold

In this paper we propose a (natural) nonalternating

algorithm that solves for A and B simultaneously. The

algorithm is based on differential geometry (i.e., dif-

ferential calculus on differentiable manifolds also

known as Riemannian manifolds).

The topic of optimization on manifolds, also referred

to as Riemannian optimization, is gaining ground be-

cause many nonlinear problems can be cast in terms of

manifolds in addition to the elegance of the theory

FIG. 1. Illustration showing a dataset of 25 points with their

convex hull (dashed) and a hull approximation (continuous) with

five archetypes (square). The set of points contributing to the re-

sidual sum of squares R are shown in purple with their projection

on the hull approximation.

1 The complexity of the convex hull computation grows expo-

nentially with the dimension; see, for example, Barber et al. (1996),

although Wang et al. (2013) propose a polynomial complexity

algorithm.
2 A (p2 1) simplex is a (p2 1)-dimensional polytope obtained

through convex combination of a given p (affinely) independent

points (or vertices) x1, . . . , xp [in (p2 1) dimensions], that is,

combinations of the form �p

k51ukxk with uk $ 0, k5 1, . . . , p, and

�p

k51uk 5 1. Examples include a line segment, a triangle in three

dimensions, and tetrahedron in four dimensions.
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behind it (see, e.g., Smith 1994; Absil et al. 2010). The

objective is to seek a solution to the minimization

problem

min
x2M

f (x) , (11)

whereM is a differentiable manifold. Examples of such

manifolds include the (n2 1)-dimensional sphere Sn21, a

submanifold of Rn. Of particular interest here is the set

of matrices with unit-vector rows (or columns):

Ob(n,m)5 fX 2 R
n3m, ddiag(XTX)5 I

m
g,

where ddiag(Y) is the double diagonal operator, which

transforms a square matrix Y into a diagonal matrix with

the same diagonal elements asY. Thismanifold is known

as the oblique manifold and is topologically equivalent

to the Cartesian product of spheres (see the online

supplemental material), with a natural inner product

given by

hX,Yi5 tr(XYT) . (12)

Let us denote by A+C the Hadamard matrix product

between two m3 n matrices A5 (aij) and C5 (cij) (i.e.,

the elementwise product), so A+C5 (aijcij). The con-

ventional matrix product is denoted in the usual manner

(i.e., AC).

We are now in a position to cast our problem using the

oblique manifolds [i.e., Ob(p, n) and Ob(n, p) as ex-

plained in the supplemental material]. Because of the

convexity of the weights our problem can be trans-

formed, after replacing A and B by A+A and B+B, re-
spectively (see the supplemental material), to yield

R5 kX2 (A8A)
T(B8B)

TXk2F
5 trðZÞ2 2trðZWÞ1 tr

�
ZWTW

�
, (13)

where Z5XXT and W5 (A 8A)
T(B8B)

T.

In Eq. (13) the matrices A and B are now in Ob(p, n)

and Ob(n, p), respectively. So instead of solving Eq. (6)

we now solve Eq. (13), where A and B in Eq. (6)

[satisfying Eqs. (3) and (4)] are now replaced, re-

spectively, byA+A andB+BwithA now inOb(p, n) and

B in Ob(n, p). The next step is to compute the gradient

of the cost function [Eq. (13)]. The procedure of com-

puting gradients on manifolds consists first in obtaining

the gradient on the Euclidean space [e.g., Rn3m, which

contains Ob(n, m)] followed by a projection onto the

tangent space of the differential manifold, such as

TAOb(p, n) of Ob(p, n) at A. The nice feature here is

that all our derivatives can be calculated in matrix form,

which greatly simplifies the programming side and helps

toward efficient computation.

Let us denote A2. 5A+A and similarly for B. Then we

have the following expression of the gradient of the cost

function R (see supplemental material):

=
A
R5 4

h
(B2.)TZ(2I

n
1WT)

i
+A

=
B
R5 4

h
Z(2I

n
1WT)(A2.)T

i
+B (14)

Finally, the projection of the gradient of R (=A,BR)

onto the tangent space of the oblique manifolds yields

the final gradient gradA,BR:

grad
A
R5=

A
R2Addiag

�
AT=

A
R

�

grad
B
R5=

B
R2Bddiag

�
BT=

B
R

�
. (15)

After minimizing the cost function R using the expres-

sion of the gradient in Eq. (15), the archetypes are then

given by

Z5XT(B+B)5XTB2.. (16)

b. Numerical solution and illustration

The numerical solution of the AA problem [i.e., the

minimization of R in Eq. (13)] is obtained by using ei-

ther the conjugate gradient approach or the steepest

descent method. The algorithm is run in Matlab, and we

have used a quite useful toolbox, Manopt (Boumal et al.

2014). The toolbox requires the expression of the cost

function and its gradient in addition to specifying the

nonlinear manifold. The method has been illustrated

FIG. 2. Examples of skew projection of simplexes for a (a) 2 simplex, (b) 4 simplex, and (c) 10 simplex.
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with simplified examples as shown next. The example

consists of (standard) three-dimensional Gaussian clus-

ters centered at the vertices of a three-dimensional pol-

ytope located, respectively, at (0, 3, 0), (22.1, 22.2, 0),

(2.1, 22.1,0), (0, 0, 3), and (0, 0, 23). Basically, the pol-

ytope is a reflected triangular pyramid with basis located

on an equilateral triangle in the x–y plane. The total

sample size used is 4000.

As described in section 2, AA is not nested, and

therefore various values of p, the number of archetypes,

are tested. For a given value of p the archetypes are

obtained and the residual sum of squares are computed.

Figure 3a shows a kind of scree plot of the (relative) RSS

versus p. As Fig. 3a shows, the most probable number of

archetypes can be suggested from the scree plot.

Figure 3b shows the cost function R along with the

gradient norm. The cost function reaches its floor during

the first few hundred iterations, although the gradient

norm continues to decrease with increasing iteration.

Figure 3c shows the skew projection of the elements of

the probability matrix A2. 5A+A, namely the two-

dimensional simplex projection where the archetypes

hold the simplex vertices. The clusters are associated to

some extent with the archetypes, although the centroids

are, as expected, distinct from the archetypes.

4. Application to SST and Asian monsoon

a. SST archetypes

This section applies the AA method to SST to learn

the typical patterns that represent the system. The data

come from the Hadley Centre Sea Ice and Sea Surface

Temperature3 dataset (HadISST). The data are a com-

bination of globally complete monthly fields of SST and

sea ice on a 183 18 latitude–longitude grid from 1870 to

date (Rayner et al. 2003). We restrict our analysis to the

period January 1870–December 2014. The SST anoma-

lies are computed by removing the monthly seasonal

cycle climatology. The domain considered here is lim-

ited meridionally to the region 45.58S–45.58N.

The conjugate gradient method is applied to compute

the archetypes, but the steepest descent method also

provides similar results. The algorithm is run with 100

random initial conditions, and the solution with the

smallest R is chosen. The method is first applied to the

nondetrended anomalies. The scree plot (Fig. 4) shows a

breaklike (or elbowlike) feature at p5 3 suggesting

three archetypes, which are discussed next. We note at

the outset that, once the number p of archetypes is fixed,
the order or ranking of archetypes is arbitrary (i.e., any

of the obtained patterns could be labeled archetype 1 for

example). One can choose, however, different ways to

label them such as the variance of the associated time

FIG. 3. (a) Scree plot of the five Gaussian clusters, (b) cost func-

tion (thick) and gradient norm (thin) for five archetypes, and (c) the

skew projection of the elements of the probability matrix obtained

using five archetypes. Different colors are for different clusters.

3 See www.metoffice.gov.uk/hadobs/hadisst/.
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series. Here the archetypes are simply labeled by re-

ferring to familiar patterns known in the literature.

Figure 5 shows the spatial patterns of these arche-

types. The first two clearly represent El Niño (Fig. 5a)

and La Niña (Fig. 5b) phases. Note that the anomalies

in Fig. 5 are multiplied by 10. Note also that in EOF

analysis the sign of the pattern is irrelevant. Unlike

what is expected from EOFs, Figs. 5a and 5b are not

reverse of each other, reflecting the asymmetry, or

skewness, of El Niño–Southern Oscillation (ENSO)

as a whole. In particular, the El Niño signal at the

equator and the associated pattern in the central North

and South Pacific are more than 1.5 times stronger than

their La Niña counterparts.

The third archetype of SST anomalies (Fig. 5c) is quite

interesting. It is dominated by the western boundary

currents, namely the Kuroshio, Gulf Stream, and

Agulhas Current. The Brazil Current and the East

Australian Current are also clearly dominant. There is

also another small spot of positive SST anomaly in the

Gulf of Angola. This anomaly is most probably due to an

extension of the Guinea Current where surface water

from this current accumulates in theGulf of Angola. It is

also interesting to see signatures of positive SST

anomalies near the California coast and Channel Is-

lands, which are most probably due to the Southern

California Countercurrent. It is quite interesting to see

how such minute details are captured here by AA. It is

known that western boundary currents are driven by

major gyres, which transport warm tropical waters

poleward along narrow, and sometimes deep, currents.

These currents are normally fast and are referred to as

the western intensification (e.g., Stommel 1948; Munk

1950). This indicates that these water boundary currents

represent extreme events and are located on the outer

boundary (or corners) in the system state space, and

therefore they can be captured by AA as this latter is a

method for ‘‘mining’’ the extremes.

The archetypes Z5XTB2. represent the spatial pat-

terns, somehow ‘‘equivalent’’ to EOF patterns. The

matrices A2. and B2. are also equally important in pro-

viding more information on the data. For instance the

matrixB2. provides the convex weights used to construct

the archetypes Z. Since we normally deal with not-too-

small sample sizes these weights are expected to be

dominated by a much smaller number compared to the

sample size of observations.

Figure 6 shows the mixture weights for these arche-

types. For the El Niño archetype the contribution comes

from various observations scattered over the observa-

tion period and most notably from the first half of the

record. Those events correspond to prototype El Niños,
with largest weights taking place at the end of the

nineteenth and early twentieth centuries. The contri-

bution from El Niño events of 1982 and 1997 are

also clear.

For the La Niña archetype there is a decreasing con-

tribution with time, with most weights located in the first

half of the record, with particularly high contribution

from the event of 1916–17. One can also see contribu-

tions from La Niña events of 1955 and 1975. It is in-

teresting to note that these contributing weights are

clustered (in time) as reflected in Fig. 6. Unlike the

previous two archetypes, the third, western current, ar-

chetype is dominated by the last quarter of the obser-

vational period starting around the late 1970s.

The time series of the archetypes, i.e., the columns of

the stochastic matrix A2. show the ‘‘amplitudes’’ of the

archetypes, somehow similar to the PCs, and are shown

in Fig. 7. The time series of El Niño (Fig. 7a) shows slight
weakening of the archetypes, although the events of

early 1980s and late 1990s are clearly showing up. There

is a decrease from the 1990s to the end of the record.

Prior to about 1945 the signal seemed quite stationary in

terms of strength and frequency. The time series of the

La Niña archetype (Fig. 7b) shows a general decrease in
the last 50 or so years. The signal was somehow ‘‘sta-

tionary’’ (with no clear trend) before about 1920. These

time series can be compared with, for example, the

Southern Oscillation index4 (SOI). The difference of

these two time series agrees well with the SOI (Fig. S2)

with a correlation coefficient of 0.6. There are of course

some differences regarding the way the SOI is defined in

addition to the fact that the archetypal time series are

weights (between 0 and 1).

Unlike the previous two ENSO archetypes the west-

ern current archetype time series (Fig. 7c) shows a clear

increasing trend starting immediately after an extended

FIG. 4. Scree plot of the SST anomalies showing the relative RSS vs

the number of archetypes.

4 See www.cgd.ucar.edu/cas/catalog/climind/soi.html.
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period of weak activity around 1910. The trend is not

gradual, with the existence of a period with moderate

activity around the 1960s. The most recent period, from

the late 1990s, shows strong activity.

The two-dimensional simplex projection is shown in

Fig. 8. The whole sample comprises both the light-gray-

shaded and colored points. The archetypes are repre-

sented by the vertices of the simplex, and the states with

the largest weights (matrix B2.) are color coded by the

archetype number. So basically the colors represent the

200 points that are closest to each archetype. Figure 8,

with no evidence of clusters, represents an example of

archetypal analysis where the archetypes are not nec-

essarily associated with clusters.

The analysis was also applied to the detrended SST

anomalies after removing a linear trend. The corre-

sponding scree plot is shown in Fig. 9. There is an elbow

at k5 2 archetypes. The two archetypes (not shown)

represent, respectively, El Niño and La Niña. Note that

in this case the direction linking the two archetypes

represents the first EOF. The analysis suggests that El

Niño and La Niña represent the primary extremal pat-

terns and that the western boundary currents represent

secondary extremal phenomena that are enhanced by

the trend. Nevertheless, when the algorithm is applied to

the detrended SST anomalies with p5 3, the result (not

shown) indicates that the three archetypes represent,

respectively, El Niño, La Niña, and a pattern containing

the main western boundary currents with a cold tongue

in the equatorial SST anomalies combined with positive

anomalies in the South (around 308S) and North

(around 358N) Pacific Ocean.

Research pertaining to the western boundary currents

was virtually nonexistent and has just started to attract

researchers’ attention. A very recent paper by Yang

et al. (2016) [see also the discussion by Seager and

Simpson (2016)] analyzed and discussed the western

boundary currents intensification. Yang et al. (2016)

FIG. 5. The obtained three archetypes of the SST anomalies showing (a) El Niño, (b) LaNiña,
and (c) the western currents. The color bar interval is 23 1021 8C from214 to 243 1021 8C for

(a), from 216 to 8 3 1021 8C in (b), and from 24 to 18 3 1021 8C in (c).
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performed a simple linear trend analysis and suggest

that the intensification could be due to global warming.

As pointed out by Seager and Simpson (2016) more

research is needed to investigate and disentangle the

reasons behind this intensification. A comprehensive

study of the western boundary currents using other

variables such as bathymetry (e.g., sea surface heights)

and ocean net heat flux is under investigation but goes

beyond the scope of the present paper.

b. Monsoon archetypes

We consider here the sea level pressure (SLP) field

from the 40-yr European Centre for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-40)

project. The data span the period 1958–2001 over the

monsoon region (208S–358N, 508–1508E) during the

summer monsoon season from June to September

(JJAS). Daily SLP anomalies are constructed as in

HT13, by subtracting the mean daily seasonal cycle. The

data are provided on a Gaussian grid with a total sample

size of 5368. HT13 used isometric mapping (Isomap) to

study the nonlinear behavior of Asian monsoon and

characterize the different monsoon regimes. They

identified three regimes, namely, active and break

monsoon phases over the Indian continent and an active

monsoon phase over the China Sea. Here we wish to

investigate the archetypes of Asian summer monsoon

and analyze any potential link between these archetypes

and monsoon regimes. We follow HT13 by using the

detrended data obtained by removing a linear trend

from the daily SLP anomalies.

The same AA procedure is applied as explained

above. The scree plot (Fig. S3) shows some indication

of a small break at p5 3, then a steeper decrease of the

relative RSS with a (slight) second elbow at p5 4 ar-

chetypes with about RSS 5 62%. Note, however, that

the elbow here is weaker than that of Fig. 4 or Fig. 9

owing to the noise level in the monsoon daily SLP

anomalies compared with the monthly SST anomalies.

We explore both (p5 3 and p5 4) solutions and also

discuss the five-archetype solution. The three-archetype

solution provides a kind of baseline for comparison with

the three monsoon regimes of HT13. Figure 10 shows

the three archetypes obtained with the detrended SLP

anomalies. The first archetype (Fig. 10a) shows a high

pressure anomaly located mainly over the East China

Sea and eastern China. The second archetype (Fig. 10b)

has a low pressure center sitting over most of the Indian

FIG. 6. Mixture weights of the three archetypes of SST anomalies: (a) El Niño, (b) La Niña, and (c) the western

currents.
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Ocean and South Asia with its center of action sitting

over India, the Arabian Sea, and the Bay of Bengal.

Associated with this low pressure is the small high

pressure center over the northwest Pacific. The last ar-

chetype (Fig. 10c) shows mainly a low pressure center

over most of China, Cambodia, and the western North

Pacific (WNP) but not over India and surrounding seas.

To compare these archetypes with the regimes of

HT13, Fig. 11, which is similar to their Fig. 11, provides a

summary of their regimes. Figure 11a shows the pdf of

monsoon SLP anomalies within the two-dimensional

reduced space spanned by the leading two Isomap time

series x1 and x2. The pdf is obtained using a three-

Gaussian mixture model where the three regimes rep-

resent the centers of the three Gaussian components of

the model. The individual Gaussian components of the

mixture model are shown by their covariance ellipse

shown by the solid line contour. These regimes repre-

sent, respectively, the WNP active phase (Fig. 11b) and

the active phase (Fig. 11c) and the break phase

(Fig. 11d) of the Asian summer monsoon. These SLP

anomaly maps are obtained by averaging the 300 states

closest to the individual centers of the Gaussian com-

ponents of the mixture model. To have a full picture of

the monsoon dynamics, the corresponding averages of

the 850-hPa wind anomalies are also computed and are

overlaid on the SLP anomaly maps. The anticyclonic

wind velocity, or negative relative vorticity (Fig. 11b), is

FIG. 7. As in Fig. 6, but for the time series of the archetypes.

FIG. 8. Two-dimensional simplex projection (shaded and colored

points) of the SST anomalies using three archetypes. The 200

points that are closest to each of the three archetypes are colored,

respectively, red, blue, and black, and the remaining points are

shown by light gray shading in the background.

6936 JOURNAL OF CL IMATE VOLUME 30



clearly associated with the high pressure system, with

clear enhancement over the northwest Pacific. The So-

mali jet is clearly enhanced for the active phase

(Fig. 11c) with a particular low pressure system associ-

ated with cyclonic wind (positive vorticity) over the Bay

of Bengal and most of the Indian continent. The break

phase (Fig. 11d), on the other hand, is associated with

anticyclonic wind and positive pressure anomaly over

the Indian continent and the Arabian Sea. Note that the

break phase over the Indian continent is associated

with a low pressure system over NWP and the eastern

parts of China.

There is a clear similarity between the three arche-

types and the monsoon regimes. Archetype 1 represents

the WNP active phase whereas archetypes 2 and 3 rep-

resent, respectively, the active and break phases of the

Asian summer monsoon. Note the difference in ampli-

tude between the archetypes and the regimes, reaching

up to 6 times, as the latter represent centroids (Fig. 11a)

whereas the former represent extremal states.

The association between the archetypes and the re-

gimes can be analyzed again via the simplex projection.

Figure 12 shows the simplex projection of the three-

archetype model (gray-shaded dots), and the colors

represent the 800 SLP anomaly states that are closest to

the regimes of HT13 (Fig. 12). The red, blue, and black

colors represent, respectively, the WNP, active, and

break phases of the Asian monsoon. Figure 12 bears

some resemblance of concept to Fig. 3c. Each cluster can

be associated to one archetype but is, of course, distinct

from it. The clusters are on the faces as well as inside the

simplex, with a clear dominance of the active phase (Fig.

11a) of the Asian summer monsoon (blue color).

The archetypes have contribution from a number of

observations as is reflected by the weights from the B2.

matrix (Fig. 13). The WNP active phase archetype

(Fig. 13a) has a main contribution from the years 1979,

1983, 1967, and 1997. The active phase archetype

(Fig. 13b) has the largest contributions from 1958, 1988,

and other observations from the early 1960s and 1990s.

The break phase archetype (Fig. 13c) has contributions

mainly from the 1960s, early 1970s, late 1980s, and 1990s.

It is interesting to note that the contributing periods for

one archetype do not overlap with the contributing pe-

riods of another.

The (amplitude) time series of the archetypes are

shown in Fig. 14. By inspecting Figs. 13 and 14 the

contributing observations (Fig. 13) can be identified also

FIG. 9. Scree plot of the detrended SST anomalies showing the

relative RSS vs the number of archetypes.

FIG. 10. Solutions of the three-archetype problem applied to the

detrended SLP anomalies over theAsian summermonsoon region.

Contour interval is 1 hPa.
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in Fig. 14 through their relatively high amplitudes. It is

particularly interesting to see that theWNP active phase

archetype (Fig. 14a) has a pronounced low-frequency

signature (on the order of 4–5 years) compared to the

active (Fig. 14b) or break (Fig. 14c) monsoon phases,

associated possibly with a low-frequency signal origi-

nating from the Pacific Ocean and generated by ENSO.

The break monsoon phase (Fig. 14c), in particular, does

not show any low-frequency signature.

The four- and five-archetype solutions are also in-

vestigated for completeness and comparison. Figure 15

shows the four archetypes from the four-archetype

model of the Asian summer monsoon. Despite the fact

that archetypes are not nested, Fig. 15 shows that the

three archetypes identified earlier are approximately

reproduced where archetypes 1, 3, and 4 (Fig. 15) are

associated, respectively, with archetypes 2, 1, and 3

(Fig. 10). Note that archetype 2 (Fig. 15b) shows

mainly a low pressure system over most of the contigu-

ous South Asian mainland associated most probably

with a thermal low due to landmass heating. The five-

archetype solution has also been examined (not shown).

Three archetypes (among the five) look quite similar to

those of the three-archetype solution, suggesting that

the three regimes of HT13 are consistent and represent

an integral part of the Asian monsoon dynamics.

As for the three-archetype solution Fig. 16 shows the

simplex projection of the SLP data, with colors referring

to the monsoon regimes, associated with the four- and

five-archetype solutions. As for Fig. 12, the colors refer

again to the 800 SLP anomaly states closest to the re-

gime centroids of HT13 (Fig. 11), and the remaining

FIG. 11. (a) Three-component Gaussian mixture model of the leading two Isomap time series of the monsoon

SLP anomalies showing the three centers A, B, and C and the SLP anomalies obtained by averaging (or com-

positing over) the closest 300 states to these centers and showing, respectively, (b) theWNP active phase and (c) the

active phase and (d) the break phase regimes of the Asian monsoon. The centers A, B, and C in (a) correspond to

the centers of the individual Gaussians (solid) of the three-component mixture model. Overlaid on the SLP

anomaly maps are the associated 850-hPa wind anomaly averages (or composites). Contour interval is 0.5 hPa, and

the maximum wind arrow represents 2.5m s21. Adapted from HT13.
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points are shown by light gray shading in the back-

ground. It can be seen that for both the four- (Fig. 16a)

and five-simplex (Fig. 16b) projections the clusters are

still associated with the corresponding archetype. For

example, the blue cluster is associated with (or closer to,

compared with the others) the top vertex in Fig. 16a and

to the top-left vertex in Fig. 16b. Compared to Fig. 12,

with the optimum number of archetypes, Fig. 16 has

more than three archetypes and the simplexes are dif-

ferent, which affect the projection. In particular, the

clusters get somehow stretched. We stress again, how-

ever, that the clusters are still reasonably associated

with, but separated from, the three archetypes, partic-

ularly with four archetypes and to some extent with five

archetypes (Fig. 16).

5. Discussion of the robustness of AA

In this section we discuss the sensitivity of themethod.

Since archetypes seek to approximate the convex hull

and are therefore connected directly to extremes it is

important to investigate the sensitivity of the method

especially to outliers and sample size.

We start with the clustered sample of Fig. 3 discussed

in section 3b. To investigate the effect of sample size we

consider subsamples of different sizes ranging from

n5 4000 (original size) to 250 by increments of 250, in

addition to two extra subsamples with respective sizes

100 and 50, adding up to 18 subsamples. Figure S4a

shows the scree plot of these 18 subsamples. The plot for

the whole (original) sample (Fig. 3a) is also shown. One

can notice that the relative RSS at five archetypes for

small samples is slightly larger than that of the whole

sample. Overall, however, there is a clear consistency

between the different samples on five archetypes. These

archetypes for the different subsamples are calculated

and plotted in Fig. S4b. There is clear consistency be-

tween the archetypes of the different samples.

To investigate the effect of outliers the original

sample was first centered then sorted based on the

norm of the data points. Extreme points, defined as

those points above the top 5th percentile, are multi-

plied by a factor of 3 making a new sample with 5%

outliers (Fig. S5). These outliers are made deliberately

exaggerated to make the point clear. The scree plot of

this new set (with outliers) is also shown in Fig. S4a.

The relative RSS is small, but nonvanishing, for four

archetypes. However, with five archetypes the relative

RSS is very similar to that of the original sample. The

archetypes of the new set are shown in Fig. S4b. Al-

though these archetypes are different from those of the

original sample (because of the outliers), they have

some sort of association with those archetypes (and

with the clusters).

A similar procedure is applied to the data used in

section 4. The effect of sample size is investigated by

using eight subsamples of sizes ranging from 1500 to

100 by steps of 200. The SST data were randomized to

avoid any trend effect. Figure S6a shows the relative

RSS in the scree plot of these eight subsamples along

with the curve of the original SST anomaly data. The

curves are very similar and clearly show an obvious

break at k5 3. The associated archetypes are com-

puted and, to ease visualization, are projected onto

the leading three EOFs of the SST anomalies

(Fig. S6b). There is clear evidence of consistency be-

tween the archetypes of the subsamples and those of

the whole sample. To investigate the effect of ex-

tremes we construct three new datasets by removing,

respectively, the top 1st, 2.5th, and 5th percentiles

(defined as in the above example). The associated

relative RSS are shown in the scree plot of Fig. S6a.

They are hardly distinguishable from the remaining

curves and are consistent with the relative RSS of the

whole dataset. The corresponding archetypes (pro-

jected onto the SST EOFs) are displayed in Fig. S6b.

The archetypes are again consistent with those of the

original data and the subsamples. A similar procedure

is applied to the detrended SST anomalies and also the

monsoon data and similar results of consistency are

obtained (not shown).

Last, we would like to discuss theAA results when the

data have no structure (e.g., multivariate Gaussian).

Christiansen (2007), for example, showed that a number

FIG. 12. Simplex projection of the three-archetype solution of the

daily detrended sea level pressure anomalies over the Asian

monsoon region. The colors refer to the 800 states closest to each of

the regime centroids of HT13 (WNP active phase in red, the active

phase in blue, and the break phase in black) and the remaining

points are shown by light gray shading in the background.
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of clustering methods detect fictitious clusters in such

data. We reiterate here that AA is not meant to find

clusters but finds an optimum set of archetypes ap-

proximating the convex hull. It is only when the data are

clustered, with clusters located near the data border,

that the archetypes are associated, but not identical, to

the cluster centroids. So the application (e.g., to a mul-

tinormal sample) provides a priori an appropriate

number of archetypes. The application to (standard)

multivariate normal samples yields scree plots that de-

pend on the problem dimension m. For small m, less

than about m0 5 5, the relative RSS plots show that the

optimum number of archetypes is about 2m (Fig. S7).

For those dimensions the multinormal sample has m

principal axes (which also represent EOFs), and the

archetypes come in pairs and each pair corresponds to

two (extreme) states (along the corresponding axis). For

larger than m0 dimensions the curse of dimensionality

affects the results, and the scree plots show gradually

smooth relative RSS curves with increasing m with no

clear optimum value. Of course, in the latter case one

can still choose an appropriate number of archetypes,

based on a given threshold of relative RSS, such as 50%

or 70%.

6. Summary and conclusions

The increase in the size and quality of climate data

calls for more advanced data analysis tools to be ex-

plored. This call is motivated by the need to understand

not only the bulk of the probability distribution function

of the climate system but also its tail or extremes.

Conventional methods used in climate science are as-

sociated mostly with EOF analysis one way or another.

EOFs have a number of drawbacks and do not treat

extremes (e.g., with heavy-tailed distribution) in any

special way. This paper explores a different analysis

tool, the archetypal analysis (AA), to identify ‘‘pure’’

types or archetypes of the data where these archetypes

are expressed as a mixture (or convex combination) of

the observations, and the observations are an approxi-

mate mixture of the archetypes. This, plus the fact that

the archetypes constitute a subset of the data corners (or

outskirts of the observations in the data sample space),

FIG. 13. Mixture weights of the three archetypes of the Asian monsoon (detrended) SLP anomalies: (a) WNP,

(b) active, and (c) break monsoon phases.
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constitute the main features of AA, which combines the

virtues of clustering and EOF analysis. AA is relatively

‘‘new’’ in climate science, although it was introduced

about two decades ago in pattern recognition (Cutler

and Breiman 1994).

AA is essentially based on estimating the convex hull of

the data and attempts to find representative corners or

extremes of the data. In addition, AA allows a represen-

tation of high-dimensional data using simplex visualiza-

tion and provides transition probabilities between states,

which may be useful (e.g., in clustering). Conventionally,

the AA problem is solved using the original multistep

alternating constrained least squares (Cutler andBreiman

1994; Seth and Eugster 2016). Here we have developed

a new approach to solve the AA problem using a

Riemannian manifold-based algorithm. Themethod is

based on a simultaneous optimization of both the weight

matrices A and B using the oblique manifold by calcu-

lating the gradient of the cost function on this manifold

and optimizing via the conjugate gradient or the steepest

descent using the Manopt toolbox. The method has been

illustrated with a simple example and then applied to real

data of SSTs and the Asian summer monsoon.

The method was first applied to the monthly SST

anomalies (with respect to the mean annual cycle) from

the HadISST between 45.58S and 45.58N. Both the

nondetrended and the detrended anomalies were used.

For the nondetrended anomalies the analysis suggests

three archetypes. The first two archetypes are associ-

ated, respectively, with El Niño and La Niña states with
anomalies ranging from 228 to 2.58C. These two states

are not opposite of each other as would be expected

from an EOF analysis, reflecting the skewness of the

tropical Pacific SSTs. The third archetype came out as

the western boundary currents including the Kuroshio

andGulf Stream but also other features of these currents

such as theEastAustralian Current, Gulf ofAngola, and

Southern California Countercurrent. The SST anoma-

lies of these currents go up to about 28C. The contribu-

tions to this pattern come essentially from the last two

decades. The (amplitude) time series of the western

currents archetype shows an increasing trend starting

from around the mid-1930s. There is also a decreasing

trend of La Niña archetype time series, but the El Niño
archetype time series does not show a pronounced trend.

When the SST anomalies are detrended the analysis

FIG. 14. As in Fig. 13, but for the time series of the archetypes.

1 SEPTEMBER 2017 HANNACH I AND TRENDAF I LOV 6941



suggests that the data can be explained well with two

archetypes, El Niño and La Niña.
AA was also applied to the Asian summer monsoon

variability. The data consisted of the detrended SLP

anomalies from ERA-40 over the Asian monsoon re-

gion (208–358N, 508–1508E) for the summer season

June–September (JJAS) 1958–2001 as in the study of

HT13, which is used for comparison. The scree plot of

the relative RSS suggests two elbows, one at p5 3 and a

weaker one at p5 4 archetypes. We have investigated

the different solutions corresponding to p5 3, 4, and 5

for consistency. The three-archetype solution yielded

similar patterns to the regime centroids ofHT13, namely

the WNP active phase and the active and break

monsoon phases. The magnitudes of the archetypes are,

however, larger than those of the regimes by up to 6

times. The simplex projection also suggests that the ar-

chetypes are somewhat associated with the regime

centroids of HT13. Contributions to the archetypes

come from various observations across the observed

period, particularly the 1980s for the WNP active phase

and from the 1960s and 1990s for the break phase. There

is some signature of low-frequency variation in theWNP

active phase and the Indian active phase (on the order of

4–5 years), due possibly to oceanic influence but with

much less signature for the (Indian) break phase. The

four- and five-archetype solutions have also been ex-

amined. Despite the nonnested nature of AA, the

FIG. 16. As in Fig. 12, but for simplex projection of the (a) four- and (b) five-archetype solution of the daily

detrended SLP anomalies over the Asian monsoon region.

FIG. 15. Solutions of the four-archetype problem applied to the detrended SLP anomalies over the Asian summer

monsoon region. Contour interval is 1 hPa.
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patterns provided by the three-archetype model are

approximately reproduced in the four- and five-

archetype models. This was also confirmed from the

simplex projection, suggesting that the Asian monsoon

dynamics are consistent with the nonlinear regimes

of HT13.

The robustness of the method was also analyzed by

investigating the sensitivity to the sample size and

outliers using both the generated samples and the real

data. The method shows robustness to the sample size

and also extremes. The method is slightly sensitive to

outliers, but the archetypes of the data with outliers

are not dissociated with those of the data without

outliers. The investigation of data without any struc-

ture (multinormal) shows that for small dimensions

the optimum number of archetypes is twice the di-

mension, but for large dimensions no such optimum is

suggested.

AA constitutes a powerful tool that can be used to

analyze large-scale climate data. One of the outstanding

features of AA that is lacking from other conventional

methods, such as EOF analysis, is the direct link to the

observations, which facilitates the interpretation. The

approximation using the ‘‘corners’’ of the data is unique

to AA. This can be used, for example, to study the

temporal expansion of the convex hull of the system

within its state space resulting, for instance, from global

warming. This can be applied, for example, to surface

temperature in the polar region in association with the

polar amplification.

The algorithm developed here scales with the tem-

poral dimension (or sample size) and the problem di-

mension, an advantage that can be explored to

analyze, for example, simulations from high-resolution

climate models. Perhaps one of the challenging issues

of AA is the determination of the ‘‘right’’ number of

archetypes. The scree plot was shown to be quite useful

here but may not be so in other cases, and methods

based, for example, on information criteria such as

Akaike information criteria (AIC; Akaike 1973, 1974)

or Bayesian information procedure (BIC; Akaike

1978; Schwarz 1978) or even a cross-validation ap-

proach (e.g., Ramsay and Silverman 2006) could be

explored in the future. Another point that was not

investigated further is the probabilistic nature of the

weight matrices. These could be used to analyze the

temporal transition probabilities between archetypes

and could be explored, for example, in combination

with forecasting models.
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