61,969 research outputs found
Estimation of fractal dimension for a class of Non-Gaussian stationary processes and fields
We present the asymptotic distribution theory for a class of increment-based
estimators of the fractal dimension of a random field of the form g{X(t)},
where g:R\to R is an unknown smooth function and X(t) is a real-valued
stationary Gaussian field on R^d, d=1 or 2, whose covariance function obeys a
power law at the origin. The relevant theoretical framework here is ``fixed
domain'' (or ``infill'') asymptotics. Surprisingly, the limit theory in this
non-Gaussian case is somewhat richer than in the Gaussian case (the latter is
recovered when g is affine), in part because estimators of the type considered
may have an asymptotic variance which is random in the limit. Broadly, when g
is smooth and nonaffine, three types of limit distributions can arise, types
(i), (ii) and (iii), say. Each type can be represented as a random integral.
More specifically, type (i) can be represented as the integral of a certain
random function with respect to Lebesgue measure; type (ii) can be represented
as the integral of a second random functio
Transformation media that rotate electromagnetic fields
We suggest a way to manipulate electromagnetic wave by introducing a rotation
mapping of coordinates that can be realized by a specific transformation of
permittivity and permeability of a shell surrounding an enclosed domain. Inside
the enclosed domain, the information from outside will appear as if it comes
from a different angle. Numerical simulations were performed to illustrate
these properties.Comment: 5 pages, 3 figure
Embedding theory for excited states with inclusion of self-consistent environment screening
We present a general embedding theory of electronic excitations of a
relatively small, localized system in contact with an extended, chemically
complex environment. We demonstrate how to include the screening response of
the environment into highly accurate electronic structure calculation of the
localized system by means of an effective interaction between the electrons,
which contains only screening processes occurring in the environment. For the
common case of a localized system which constitutes an inhomogeneity in an
otherwise homogeneous system, such as a defect in a crystal, we show how matrix
elements of the environment-screened interaction can be calculated from
density-functional calculations of the homogeneous system only. We apply our
embedding theory to the calculation of excitation energies in crystalline
ethylene
Dynamic Windows Scheduling with Reallocation
We consider the Windows Scheduling problem. The problem is a restricted
version of Unit-Fractions Bin Packing, and it is also called Inventory
Replenishment in the context of Supply Chain. In brief, the problem is to
schedule the use of communication channels to clients. Each client ci is
characterized by an active cycle and a window wi. During the period of time
that any given client ci is active, there must be at least one transmission
from ci scheduled in any wi consecutive time slots, but at most one
transmission can be carried out in each channel per time slot. The goal is to
minimize the number of channels used. We extend previous online models, where
decisions are permanent, assuming that clients may be reallocated at some cost.
We assume that such cost is a constant amount paid per reallocation. That is,
we aim to minimize also the number of reallocations. We present three online
reallocation algorithms for Windows Scheduling. We evaluate experimentally
these protocols showing that, in practice, all three achieve constant amortized
reallocations with close to optimal channel usage. Our simulations also expose
interesting trade-offs between reallocations and channel usage. We introduce a
new objective function for WS with reallocations, that can be also applied to
models where reallocations are not possible. We analyze this metric for one of
the algorithms which, to the best of our knowledge, is the first online WS
protocol with theoretical guarantees that applies to scenarios where clients
may leave and the analysis is against current load rather than peak load. Using
previous results, we also observe bounds on channel usage for one of the
algorithms.Comment: 6 figure
‘Multi-directional management’: Exploring the challenges of performance in the World Class Programme environment
Driven by the ever-increasing intensity of Olympic competition and the ‘no compromise – no stone unturned’ requirements frequently addressed by HM Government and its main agency, UK Sport, a change in culture across Olympic team landscapes is a common occurrence. With a focus on process, this paper presents reflections from eight current or recently serving UK Olympic sport Performance Directors on their experiences of creating and disseminating their vision for their sport, a vital initial activity of the change initiative. To facilitate a broad overview of this construct, reflections are structured around the vision’s characteristics and foundations, how it is delivered to key stakeholder groups, how it is influenced by these groups, the qualities required to ensure its longevity and its limitations. Emerging from these perceptions, the creation and maintenance of a shared team vision was portrayed as a highly dynamic task requiring the active management of a number of key internal and external stakeholders. Furthermore, the application of ‘dark’ traits and context-specific expertise were considered critical attributes for the activity’s success. Finally, recent calls for research to elucidate the wider culture optimisation process are reinforced
Space shuttle contamination due to backflow from control motor exhaust
Spacecraft contamination of the space shuttle orbiter and accompanying Spacelab payloads is studied. The scattering of molecules from the vernier engines and flash evaporator nozzle after impingement on the orbiter wing surfaces, and the backflow of molecules out of the flash evaporator nozzle plume flow field due to intermolecular collisions in the plume are the problems discussed. A method was formulated for dealing with these problems, and detailed results are given
Tropospheric HO2 determination by FAGE
The detection efficiency is greatest at low pressures, where the subsequent removal of the HO product by the NO reagent (via HO + NO + M yields HONO + M) is relatively slow. Moreover, nozzle expansion of the air from ambient to low pressures produces a turbulent zone that assists in mixing the reagent with the sample. If the HO product is observed by laser-excited fluorescence, then the other advantages of low-pressure detection by FAGE (Fluorescence Assay with Gas Expansion) also apply. The FAGE instrumental response was calibrated to external HO2 by observing NO decay in the photolysis of HO-CH2O mixtures and by choosing conditions in which HO2 + NO is the only significant NO destruction path. HO2 was determined in urban air
- …