49,255 research outputs found

    Transformation media that rotate electromagnetic fields

    Get PDF
    We suggest a way to manipulate electromagnetic wave by introducing a rotation mapping of coordinates that can be realized by a specific transformation of permittivity and permeability of a shell surrounding an enclosed domain. Inside the enclosed domain, the information from outside will appear as if it comes from a different angle. Numerical simulations were performed to illustrate these properties.Comment: 5 pages, 3 figure

    Tropospheric HO2 determination by FAGE

    Get PDF
    The detection efficiency is greatest at low pressures, where the subsequent removal of the HO product by the NO reagent (via HO + NO + M yields HONO + M) is relatively slow. Moreover, nozzle expansion of the air from ambient to low pressures produces a turbulent zone that assists in mixing the reagent with the sample. If the HO product is observed by laser-excited fluorescence, then the other advantages of low-pressure detection by FAGE (Fluorescence Assay with Gas Expansion) also apply. The FAGE instrumental response was calibrated to external HO2 by observing NO decay in the photolysis of HO-CH2O mixtures and by choosing conditions in which HO2 + NO is the only significant NO destruction path. HO2 was determined in urban air

    A Solvable Model of Two-Dimensional Dilaton-Gravity Coupled to a Massless Scalar Field

    Get PDF
    We present a solvable model of two-dimensional dilaton-gravity coupled to a massless scalar field. We locally integrate the field equations and briefly discuss the properties of the solutions. For a particular choice of the coupling between the dilaton and the scalar field the model can be interpreted as the two-dimensional effective theory of 2+1 cylindrical gravity minimally coupled to a massless scalar field.Comment: 6 pages, RevTeX, to be published in Phys. Rev.

    An Improved Private Mechanism for Small Databases

    Full text link
    We study the problem of answering a workload of linear queries Q\mathcal{Q}, on a database of size at most n=o(Q)n = o(|\mathcal{Q}|) drawn from a universe U\mathcal{U} under the constraint of (approximate) differential privacy. Nikolov, Talwar, and Zhang~\cite{NTZ} proposed an efficient mechanism that, for any given Q\mathcal{Q} and nn, answers the queries with average error that is at most a factor polynomial in logQ\log |\mathcal{Q}| and logU\log |\mathcal{U}| worse than the best possible. Here we improve on this guarantee and give a mechanism whose competitiveness ratio is at most polynomial in logn\log n and logU\log |\mathcal{U}|, and has no dependence on Q|\mathcal{Q}|. Our mechanism is based on the projection mechanism of Nikolov, Talwar, and Zhang, but in place of an ad-hoc noise distribution, we use a distribution which is in a sense optimal for the projection mechanism, and analyze it using convex duality and the restricted invertibility principle.Comment: To appear in ICALP 2015, Track

    Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission

    Get PDF
    We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-LL\star starburst, and LL\star galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ\gamma-ray emission from nearby and starburst galaxies. We reproduce the γ\gamma-ray observations of dwarf and LL\star galaxies with constant isotropic diffusion coefficient κ3×1029cm2s1\kappa \sim 3\times 10^{29}\,{\rm cm^{2}\,s^{-1}}. Advection-only and streaming-only models produce order-of-magnitude too large γ\gamma-ray luminosities in dwarf and LL\star galaxies. We show that in models that match the γ\gamma-ray observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ\gamma-ray emissivities. Models where CRs are ``trapped'' in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ\gamma-ray observations. For models with constant κ\kappa that match the γ\gamma-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA

    Nearly Optimal Private Convolution

    Full text link
    We study computing the convolution of a private input xx with a public input hh, while satisfying the guarantees of (ϵ,δ)(\epsilon, \delta)-differential privacy. Convolution is a fundamental operation, intimately related to Fourier Transforms. In our setting, the private input may represent a time series of sensitive events or a histogram of a database of confidential personal information. Convolution then captures important primitives including linear filtering, which is an essential tool in time series analysis, and aggregation queries on projections of the data. We give a nearly optimal algorithm for computing convolutions while satisfying (ϵ,δ)(\epsilon, \delta)-differential privacy. Surprisingly, we follow the simple strategy of adding independent Laplacian noise to each Fourier coefficient and bounding the privacy loss using the composition theorem of Dwork, Rothblum, and Vadhan. We derive a closed form expression for the optimal noise to add to each Fourier coefficient using convex programming duality. Our algorithm is very efficient -- it is essentially no more computationally expensive than a Fast Fourier Transform. To prove near optimality, we use the recent discrepancy lowerbounds of Muthukrishnan and Nikolov and derive a spectral lower bound using a characterization of discrepancy in terms of determinants

    Exterior optical cloaking and illusions by using active sources: a boundary element perspective

    Full text link
    Recently, it was demonstrated that active sources can be used to cloak any objects that lie outside the cloaking devices [Phys. Rev. Lett. \textbf{103}, 073901 (2009)]. Here, we propose that active sources can create illusion effects, so that an object outside the cloaking device can be made to look like another object. invisibility is a special case in which the concealed object is transformed to a volume of air. From a boundary element perspective, we show that active sources can create a nearly "silent" domain which can conceal any objects inside and at the same time make the whole system look like an illusion of our choice outside a virtual boundary. The boundary element method gives the fields and field gradients (which can be related to monopoles and dipoles) on continuous curves which define the boundary of the active devices. Both the cloaking and illusion effects are confirmed by numerical simulations
    corecore