9 research outputs found

    Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals : Progress, challenges and outlook

    Get PDF
    Hydrogen sulfide (H2S) is a toxic gas released from natural occurrences (such as volcanoes, hot springs, municipal waste decomposition) and human economic activities (such as natural gas treatment and biogas production). Even at very low concentrations, H2S can cause adverse health impacts and fatality. As such, the containment and proper management of H2S is of paramount importance. The recovered H2S can then be transformed into hydrogen (H2) and various value-added products as a major step towards sustainability and circular economy. In this review, the state-of-the-art technologies for H2S conversion and utilization are reviewed and discussed. Claus process is an industrially established and matured technology used in converting H2S to sulfur and sulfuric acid. However, the process is energy intensive and emits CO2 and SO2. This calls for more sustainable and energy-efficient H2S conversion technologies. In particular, recent technologies for H2S conversion via thermal, biological, plasma (thermal and non-thermal), electrochemical and photocatalytic routes, are critically reviewed with respect to their strengths and limitations. Besides, the potential of diversified value-added products derived from H2S, such as H2, syngas, carbon disulfide (CS2), ammonium sulphate ((NH4)2SO4), ammonium thiosulfate ((NH4)2S2O3), methyl mercaptan (CH3SH) and ethylene (C2H4) are elucidated in detail with respect to the technology readiness level, market demand of products, technical requirements and environmental impacts. Lastly, the technological gaps and way forward for each technology are also outlined

    Discussion on Water Condensation in Membrane Pores during CO2 Absorption at High Temperature

    No full text
    Water condensation is a possible cause of membrane wetting in the operation of membrane contactors, especially under high-temperature conditions. In this study, water condensation in pores of polytetrafluoroethylene (PTFE) hollow fiber membranes was investigated during high-pressure CO2 absorption around 70 °C. It was found that the liquid accumulation rate in the treated gas knock-out drum was constant during continuous operation for 24 h when all experimental conditions were fixed, indicating a stable degree of membrane wetting. However, as the operating parameters were changed, the equilibrium vapor pressure of water within membrane pores could change, which may result in a condensation-conducive environment. Water condensation in membrane pores was detected and proven indirectly through the increase in liquid accumulation rate in the treated gas knock-out drum. The Hagen–Poiseuille equation was used to correlate the liquid accumulation rate with the degree of membrane wetting. The degree of membrane wetting increased significantly from 1.8 × 10−15 m3 to 3.9 × 10−15 m3 when the feed gas flow rate was reduced from 1.45 kg/h to 0.40 kg/h in this study due to water condensation in membrane pores. The results of this study provide insights into potential operational limitations of membrane contactor for CO2 absorption under high-temperature conditions

    Optimization of MDEA-PZ Ratio and Concentration for CO

    No full text
    Membrane contactor has garnered interest in the recent decade due to its advantages. This study looks at optimisation of the amine concentration, comprising of methyldiethanolamine (MDEA) with piperazine (PZ) in membrane contactor to remove CO2 from 25mol% down to 6.5mol%. 37 experiments were carried out and the results were analysed through response surface analysis. Model is found to be significant with R2 of 0.9854. Based on contour plot produced, there exists a trade-off between amine concentration and viscosity that greatly impacts the performance. For better overall evaluation, the amine regeneration side is considered by running process simulation through gPROMS to obtain data on expected hydrocarbon co-absorption and amine regeneration energy required. The optimum amine is found to be at 45wt% concentration and MDEA-to-PZ ratio of 0.047 where the process would meet outlet spec whilst minimising amine regeneration duty and the amine rich loading

    Removal of high concentration CO2 from natural gas using high pressure membrane contactors

    No full text
    The feasibility of removing high concentration CO2 from natural gas using membrane contactors at elevated pressures was preliminarily investigated in this study. CO2-CH4 gas mixture and activated methyldiethanolamine (aMDEA) solution were used as simulated natural gas and absorbent, respectively. The stability of poly(vinylidene fluoride) (PVDF) hollow fiber membranes in aMDEA solution at room temperature was first investigated through Fourier transform infrared spectroscopy (FTIR) and contact angle (CA) analyses. The effect of operation pressure, membrane area and feed gas flow rate on CO2 removal performance as well as CH4 loss was studied. The results indicated that the CO2 removal efficiency was significantly improved with increasing operation pressure. For 70% CO2 in feed, the removal efficiency of CO2 increased from 33.3% at 1 bar to 91.3% at 60 bar under the experimental conditions. Meanwhile, the overall mass transfer coefficient (K-OG) gradually decreased due to the decrease of CO2 diffusion coefficient. The CO2 outlet concentration, CO2 flux and CH4 loss were also affected by membrane area and feed gas flow rate. This study provides a reference for the understanding of removal of high concentration CO2 from natural gas using membrane contactors at elevated pressures. (C) 2017 Elsevier Ltd. All rights reserved

    Monitoring of CO2 Absorption Solvent in Natural Gas Process Using Fourier Transform Near-Infrared Spectrometry

    No full text
    The analytical methods for the determination of the amine solvent properties do not provide input data for real-time process control and optimization and are labor-intensive, time-consuming, and impractical for studies of dynamic changes in a process. In this study, the potential of nondestructive determination of amine concentration, CO2 loading, and water content in CO2 absorption solvent in the gas processing unit was investigated through Fourier transform near-infrared (FT-NIR) spectroscopy that has the ability to readily carry out multicomponent analysis in association with multivariate analysis methods. The FT-NIR spectra for the solvent were captured and interpreted by using suitable spectra wavenumber regions through multivariate statistical techniques such as partial least square (PLS). The calibration model developed for amine determination had the highest coefficient of determination (R2) of 0.9955 and RMSECV of 0.75%. CO2 calibration model achieved R2 of 0.9902 with RMSECV of 0.25% whereas the water calibration model had R2 of 0.9915 with RMSECV of 1.02%. The statistical evaluation of the validation samples also confirmed that the difference between the actual value and the predicted value from the calibration model was not significantly different and acceptable. Therefore, the amine, CO2, and water models have given a satisfactory result for the concentration determination using the FT-NIR technique. The results of this study indicated that FT-NIR spectroscopy with chemometrics and multivariate technique can be used for the CO2 solvent monitoring to replace the time-consuming and labor-intensive conventional methods

    A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): Recent advances, challenges and outlook

    Get PDF
    Hydrogen sulfide (H2S) is a flammable, corrosive and lethal gas even at low concentrations (ppm levels). Hence, the capture and removal of H2S from various emitting sources (such as oil and gas processing facilities, natural emissions, sewage treatment plants, landfills and other industrial plants) is necessary to prevent and mitigate its adverse effects on human (causing respiratory failure and asphyxiation), environment (creating highly flammable and explosive environment), and facilities (resulting in corrosion of industrial equipment and pipelines). In this review, the state-of-the-art technologies for H2S capture and removal are reviewed and discussed. In particular, the recent technologies for H2S removal such as membrane, adsorption, absorption and membrane contactor are extensively reviewed. To date, adsorption using metal oxide-based sorbents is by far the most established technology in commercial scale for the fine removal of H2S, while solvent absorption is also industrially matured for bulk removal of CO2 and H2S simultaneously. In addition, the strengths, limitations, technological gaps and way forward for each technology are also outlined. Furthermore, the comparison of established carbon capture technologies in simultaneous and selective removal of H2S–CO2 is also comprehensively discussed and presented. It was found that the existing carbon capture technologies are not adequate for the selective removal of H2S from CO2 due to their similar characteristics, and thus extensive research is still needed in this area

    A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): Recent advances, challenges and outlook

    No full text
    Hydrogen sulfide (H2S) is a flammable, corrosive and lethal gas even at low concentrations (ppm levels). Hence, the capture and removal of H2S from various emitting sources (such as oil and gas processing facilities, natural emissions, sewage treatment plants, landfills and other industrial plants) is necessary to prevent and mitigate its adverse effects on human (causing respiratory failure and asphyxiation), environment (creating highly flammable and explosive environment), and facilities (resulting in corrosion of industrial equipment and pipelines). In this review, the state-of-the-art technologies for H2S capture and removal are reviewed and discussed. In particular, the recent technologies for H2S removal such as membrane, adsorption, absorption and membrane contactor are extensively reviewed. To date, adsorption using metal oxide-based sorbents is by far the most established technology in commercial scale for the fine removal of H2S, while solvent absorption is also industrially matured for bulk removal of CO2 and H2S simultaneously. In addition, the strengths, limitations, technological gaps and way forward for each technology are also outlined. Furthermore, the comparison of established carbon capture technologies in simultaneous and selective removal of H2S–CO2 is also comprehensively discussed and presented. It was found that the existing carbon capture technologies are not adequate for the selective removal of H2S from CO2 due to their similar characteristics, and thus extensive research is still needed in this area

    Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges and outlook

    No full text
    Hydrogen sulfide (H2S) is a toxic gas released from natural occurrences (such as volcanoes, hot springs, municipal waste decomposition) and human economic activities (such as natural gas treatment and biogas production). Even at very low concentrations, H2S can cause adverse health impacts and fatality. As such, the containment and proper management of H2S is of paramount importance. The recovered H2S can then be transformed into hydrogen (H2) and various value-added products as a major step towards sustainability and circular economy. In this review, the state-of-the-art technologies for H2S conversion and utilization are reviewed and discussed. Claus process is an industrially established and matured technology used in converting H2S to sulfur and sulfuric acid. However, the process is energy intensive and emits CO2 and SO2. This calls for more sustainable and energy-efficient H2S conversion technologies. In particular, recent technologies for H2S conversion via thermal, biological, plasma (thermal and non-thermal), electrochemical and photocatalytic routes, are critically reviewed with respect to their strengths and limitations. Besides, the potential of diversified value-added products derived from H2S, such as H2, syngas, carbon disulfide (CS2), ammonium sulphate ((NH4)2SO4), ammonium thiosulfate ((NH4)2S2O3), methyl mercaptan (CH3SH) and ethylene (C2H4) are elucidated in detail with respect to the technology readiness level, market demand of products, technical requirements and environmental impacts. Lastly, the technological gaps and way forward for each technology are also outlined.</p
    corecore