473 research outputs found

    AMPK inhibits ULK1-dependent autophagosome formation and lysosomal acidification via distinct mechanisms

    Get PDF
    Autophagy maintains metabolism in response to starvation but each nutrient is sensed distinctly. Amino acid deficiency suppresses mechanistic target of rapamycin complex 1 (MTORC1) while glucose deficiency promotes AMP-activated protein kinase (AMPK). MTORC1 and AMPK signalling pathways converge onto the ULK1/2 autophagy initiation complex. Here, we show that amino acid starvation promoted formation of ULK1- and Sequestosome1/p62-positive early autophagosomes. Autophagosome initiation was controlled by MTORC1 sensing glutamine, leucine and arginine levels together. By contrast, glucose starvation promoted AMPK activity, phosphorylation of ULK1 Ser 555 and LC3-II accumulation, but with dynamics consistent with a block in autophagy flux. We studied the flux pathway and found that starvation of amino acid, but not of glucose, activated lysosomal acidification, which occurred independently of autophagy and ULK1. Further to lack of activation, glucose starvation inhibited the ability of amino acid starvation to activate both autophagosome formation and the lysosome. Activation of AMPK and phosphorylation of ULK1 were determined to specifically inhibit autophagosome formation. AMPK activation also was sufficient to prevent lysosome acidification. These results indicate concerted but distinct AMPK-dependent mechanisms to suppress early and late phases of autophagy

    The comparative advantage and relative impact of Asian emerging economies in low carbon energy technological systems

    Get PDF
    This paper highlights the specificities of the patterns of low carbon energy technological innovations in selected Asian emerging economies. China and the members of ASEAN-4 (Thailand, Malaysia, Indonesia and the Philippines) are included in this analysis for their identical structure of developing economies. We outline a synthetic framework to cluster the technologies with similar characteristics and analyse the changes of these characteristics over time to elucidate the scope of sectoral composition and specialisation of the selected economies, in order to understand the relative impact of science-based low carbon energy technologies on the niches of technological excellence. The findings show that China was keen to pursue its diversification strategy and develop its capability in low carbon energy technologies since the tum of the millennium. However, China has been gradually losing its momentum in more traditional areas like biomass, hydroelectric power, natural gas and fossil fuels. The ASEAN-4 economies, on the other hand, are showing interest in building a number of niches of technological excellence. This highlights a contrasting relative technological advantage between large and smaller economies. Our findings also indicate that many of the low carbon technologies in selected economies have yet to attain strong scientific grounding for development. The findings of this paper are expected to provide some insights into low carbon energy technological development of emerging economies, and be useful for other developing economies to establish their strategic moves for energy industrial development

    Effects of bandwidth limitations on the localized state distribution calculated from transient photoconductivity data

    Get PDF
    The possible effects of experimental bandwidth limitation on the accuracy of the energy distribution of the density of localized states (DOS) calculated from transient photoconductivity data by the Fourier transform method is examined. An argument concerning the size of missing contributions to the numerical Fourier integrals is developed. It is shown that the degree of distortion is not necessarily large even for relatively small experimental bandwidths. The density of states calculated from transient photodecay measurements in amorphous arsenic triselenide is validated by comparing with modulated photocurrent data. It is pointed out that DOS distributions calculated from transient photoconductivity data at a high photoexcitation density are valid under certain conditions. This argument is used to probe the conduction band tail in undoped a-Si:H to energies shallower than 0.1 eV below the mobility edge. It is concluded that there is a deviation in the DOS from exponential at about 0.15 eV below the mobility edge

    Reliability and Validity of the Monitored Functional Task Evaluation (MFTE) for Patients with Chronic Obstructive Pulmonary Disease (COPD)

    Get PDF
    This article describes the development of a new functional measure — the Monitored Functional Task Evaluation (MFTE) — a symptom-limited evaluation that is used to measure the functional performance of an individual with chronic obstructive pulmonary disease (COPD), and to document a client's physiological changes through repeated testing. Stage I of the study included developing the content validity of the instrument. Stage II consisted of establishing the performance profile, test-retest and inter-rater reliability using a convenience sample of 27 inpatients and outpatients who had COPD. In stage III, the criterion-related and discriminative validity of the instrument was verified in a retrospective sample of 124 inpatients and day patients who had COPD. Results indicated that there was high intra- and inter-rater reliability for the total score of MFTE. Significant correlation of the MFTE was found with parameters such as Moser's Activities of Daily Living (ADL) class, COPD disability class, 6-minute walking distance, work capacity in terms the ratio of the metabolic rate associated with a given activity to the resting metabolic rate, and the fatigue dimension of the Chronic Respiratory Disease Questionnaire. In addition, prediction of group membership to Moser's ADL class revealed that 52.4% of the original grouped cases could be correctly classified by the MFTE alone. In conclusion, the MFTE is a useful measure to evaluate functional performance as well as document physiological changes in patients with moderate-to-severe COPD from both conceptual and empirical perspectives

    Partially Annealed Disorder and Collapse of Like-Charged Macroions

    Full text link
    Charged systems with partially annealed charge disorder are investigated using field-theoretic and replica methods. Charge disorder is assumed to be confined to macroion surfaces surrounded by a cloud of mobile neutralizing counterions in an aqueous solvent. A general formalism is developed by assuming that the disorder is partially annealed (with purely annealed and purely quenched disorder included as special cases), i.e., we assume in general that the disorder undergoes a slow dynamics relative to fast-relaxing counterions making it possible thus to study the stationary-state properties of the system using methods similar to those available in equilibrium statistical mechanics. By focusing on the specific case of two planar surfaces of equal mean surface charge and disorder variance, it is shown that partial annealing of the quenched disorder leads to renormalization of the mean surface charge density and thus a reduction of the inter-plate repulsion on the mean-field or weak-coupling level. In the strong-coupling limit, charge disorder induces a long-range attraction resulting in a continuous disorder-driven collapse transition for the two surfaces as the disorder variance exceeds a threshold value. Disorder annealing further enhances the attraction and, in the limit of low screening, leads to a global attractive instability in the system.Comment: 21 pages, 2 figure

    Early endosomes and endosomal coatomer are required for autophagy

    Get PDF
    Autophagy, an intracellular degradative pathway, maintains cell homeostasis under normal and stress conditions. Nascent double-membrane autophagosomes sequester and enclose cytosolic components and organelles, and subsequently fuse with the endosomal pathway allowing content degradation. Autophagy requires fusion of autophagosomes with late endosomes, but it is not known if fusion with early endosomes is essential. We show that fusion of AVs with functional early endosomes is required for autophagy. Inhibition of early endosome function by loss of COPI subunits (β′, β, or α) results in accumulation of autophagosomes, but not an increased autophagic flux. COPI is required for ER-Golgi transport and early endosome maturation. Although loss of COPI results in the fragmentation of the Golgi, this does not induce the formation of autophagosomes. Loss of COPI causes defects in early endosome function, as both transferrin recycling and EGF internalization and degradation are impaired, and this loss of function causes an inhibition of autophagy, an accumulation of p62/SQSTM-1, and ubiquitinated proteins in autophagosomes

    Inhibition of the ULK1 protein complex suppresses Staphylococcus-induced autophagy and cell death

    Get PDF
    Autophagy plays multiple roles in host cells challenged with extracellular pathogens. Here, we aimed to explore whether autophagy inhibition could prevent bacterial infections. We first confirmed widely distinct patterns of autophagy responses in host cells infected with Staphylococcus aureus, as compared with Salmonella. Only infection with Staphylococcus produced strong accumulation of lipidated autophagy-related protein LC3B (LC3B-II). Infection with virulent Staphylococcus strains induced formation of p62-positive aggregates, suggestive of accumulated ubiquitinated targets. During Salmonella infection, bacteria remain enclosed by lysosomal-associated membrane protein 2 (LAMP2)-positive lysosomes, whereas virulent Staphylococcus apparently exited from enlarged lysosomes and invaded the cytoplasm. Surprisingly, Staphylococcus appeared to escape from the lysosome without generation of membrane-damage signals as detected by Galectin3 recruitment. In contrast, Salmonella infection produced high levels of lysosomal damage, consistent with a downstream antibacterial xenophagy response. Lastly, we studied the Unc-51-like autophagy-activating kinase 1 (ULK1) regulatory complex, including the essential subunit autophagy-related protein 13 (ATG13). Infection of cells with either Staphylococcus or Salmonella led to recruitment of ATG13 to sites of cytosolic bacterial cells to promote autophagosome formation. Of note, genetic targeting of ATG13 suppressed autophagy and the ability of Staphylococcus to infect and kill host cells. Two different ULK1 inhibitors also prevented Staphylococcus intracellular replication and host cell death. Interestingly, inhibition of the ULK1 pathway had the opposite effect on Salmonella, sensitizing cells to the infection. Our results suggest that ULK1 inhibitors may offer a potential strategy to impede cellular infection by Staphylococcus aureus
    corecore