
1 
 

AMPK inhibits ULK1-dependent autophagosome formation and 1 

lysosomal acidification via distinct mechanisms 2 

 3 

Running title:  AMPK inhibits early and late autophagy pathways 4 

 5 

Chinwendu Nwadike1*, Leon E. Williamson1*, Laura E. Gallagher1, Jun-Lin Guan2 and 6 

Edmond Y.W. Chan1,3,4 7 

 8 
1 Strathclyde Institute for Pharmacy and Biomedical Sciences. University of Strathclyde, 9 
Glasgow, Scotland G4 0RE 10 
Tel:  +44-141-548-3924 11 
 12 
2 Department of Cancer Biology, University of Cincinnati College of Medicine. USA 13 
 14 
3 Department of Biomedical and Molecular Sciences, School of Medicine, Queen’s 15 
University, Canada 16 
 17 
4 Department of Pathology and Molecular Medicine, Kingston General Health Research 18 
Institute, Canada 19 
 20 
Corresponding author:  Edmond.Chan@Strath.ac.uk 21 

(*) these authors contributed equally to this work 22 

Key words: 23 

Autophagy, amino acid starvation, glucose starvation, ULK1, MTORC1, AMPK, leucine, 24 

glutamine, arginine, lysosome acidification 25 

  26 

MCB Accepted Manuscript Posted Online 5 March 2018
Mol. Cell. Biol. doi:10.1128/MCB.00023-18
Copyright © 2018 Nwadike et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

 on M
arch 8, 2018 by U

N
IV

E
R

S
IT

Y
 O

F
 S

T
R

A
T

H
C

LY
D

E
http://m

cb.asm
.org/

D
ow

nloaded from
 

http://mcb.asm.org/


2 
 

Abstract 27 

Autophagy maintains metabolism in response to starvation but each nutrient is sensed 28 

distinctly.   Amino acid deficiency suppresses mechanistic target of rapamycin complex 1 29 

(MTORC1) while glucose deficiency promotes AMP-activated protein kinase (AMPK).  30 

MTORC1 and AMPK signalling pathways converge onto the ULK1/2 autophagy initiation 31 

complex.  Here, we show that amino acid starvation promoted formation of ULK1- and 32 

Sequestosome1/p62-positive early autophagosomes.  Autophagosome initiation was 33 

controlled by MTORC1 sensing glutamine, leucine and arginine levels together.  By contrast, 34 

glucose starvation promoted AMPK activity, phosphorylation of ULK1 Ser 555 and LC3-II 35 

accumulation, but with dynamics consistent with a block in autophagy flux.  We studied the 36 

flux pathway and found that starvation of amino acid, but not of glucose, activated lysosomal 37 

acidification, which occurred independently of autophagy and ULK1.  Further to lack of 38 

activation, glucose starvation inhibited the ability of amino acid starvation to activate both 39 

autophagosome formation and the lysosome.  Activation of AMPK and phosphorylation of 40 

ULK1 were determined to specifically inhibit autophagosome formation.  AMPK activation 41 

also was sufficient to prevent lysosome acidification.  These results indicate concerted but 42 

distinct AMPK-dependent mechanisms to suppress early and late phases of autophagy.  43 

  44 
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Introduction 45 

During macro-autophagy (herein called autophagy), cellular components are sequestered 46 

into double-bilayer membrane vesicles termed autophagosomes.  Autophagosomes are 47 

transported to lysosomes followed by organellar fusion to allow content degradation and 48 

recycling of metabolic building blocks for cell viability (1, 2).  A fundamental feature is that 49 

autophagy is potently induced following nutrient starvation, for example in yeast deprived of 50 

nitrogen (amino acids and ammonia)(3).  Autophagy is widely appreciated as a central hub 51 

for maintaining metabolic homeostasis, which plays roles in the larger context controlling cell 52 

fate during normal ageing and cancer cell survival (4).  As such, we and others have been 53 

interested in how the mammalian ULK1/2 complex coordinates multiple nutrient-dependent 54 

signals at the top of the autophagy regulatory cascade.   55 

In one prominent model, MTORC1 phosphorylates ULK1 on Ser 757 (Ser 758 in human) 56 

which has the effect of disrupting interaction between ULK1 and AMPK (5).  This direct 57 

binding allows AMPK to phosphorylate ULK1 on sites Ser317 and Ser777, which simulates 58 

ULK1 activity for autophagy.  Amino acid starvation would suppress MTORC1 activity, 59 

facilitating positive autophagy regulation from AMPK.  Glucose starvation would in turn 60 

activate AMPK to promote autophagy via ULK1-mediated phosphorylation of factors such as 61 

Beclin1, ATG13 and FIP200 (6, 7).  This single model, however, cannot account for the full 62 

complexity of autophagy which involves other modifications on ULK1.  AMPK 63 

phosphorylates ULK1 on other sites such as Ser 467, 555, 574, 637 (Ser 467, 556, 575, 638 64 

in human), which may function for mitophagy in response to cell energy signals (8, 9).  Other 65 

patterns of nutrient-sensitive phosphorylation on ULK1 have been reported and the Ser637 66 

site appears to be controlled by both MTORC1 and AMPK, highlighting inter-connections not 67 

yet fully understood (10).   68 

Autophagy induction following amino acid starvation is widely prevalent, robust and rapid 69 

(11-13).   Autophagy following glucose starvation has also been reported but this response 70 

appears to be more complex, requiring more prolonged duration of stress to produce effects 71 

(5, 14-19).  Interestingly, the MTORC1-AMPK-ULK1 interplay model predicts that autophagy 72 

following amino acid withdrawal still requires AMPK function.  On this issue, the precise role 73 

of glucose starvation and AMPK in autophagy still remains controversial.  Low cellular 74 

energy levels and AMPK activation were initially proposed to block autophagy based on 75 

biochemical approaches (20, 21).  Other reports have shown glucose starvation to inhibit 76 

autophagy responses (22) (23, 24).   77 
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Previously, we approached this area by studying nutrient-dependent autophagy in fibroblasts 78 

derived from ULK1/2 double knockout (DKO) mice (11).  We showed that ULK1/2 DKO 79 

clearly blocked the rapid autophagy response stimulated by amino acid starvation.  In that 80 

work, we noted that prolonged (overnight) glucose starvation produced a distinct autophagy 81 

phenotype that was independent of canonical phosphatidylinositol 3-phosphate (PtdIns3P) 82 

signals.  Here, we further investigated how amino acid and glucose starvation signals control 83 

autophagy.  We find in a wide range of cells that only amino acid starvation stimulated robust 84 

bona fide autophagy degradative flux.  In contrast, glucose starvation produce phenotypes 85 

resembling a reduction of flux and halted autophagy.  Surprisingly, amino acid and glucose 86 

starvation showed differential control of autophagy gene expression, early autophagosome 87 

formation and activation of the lysosome.  Furthermore, glucose starvation and resulting 88 

AMPK activation could over-ride and suppress amino acid starvation signals that normally 89 

trigger autophagy.  These findings highlight the opposing mechanisms that allow MTOR and 90 

AMPK to balance function of both early and late stages of autophagy.   91 

  92 
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Results 93 

Glucose starvation fails to activate autophagy flux 94 

We have previously shown how amino acid starvation robustly activated autophagy in 95 

mouse embryonic fibroblasts (MEF) and how this response was fully blocked upon ULK1/2 96 

DKO (11).  Here, we explored alternate forms of nutrient stress.  We surprisingly found that 97 

starving MEF of glucose did not strongly activate autophagy, as detected by conversion of 98 

inactive LC3-I to activated (lipid-modified) LC3-II (Fig 1A).  Glucose starvation only led to 99 

relatively small increases in LC3-II that did not further accumulate when lysosomal activity 100 

was blocked by bafilomycin A1 (Baf A1), which clearly contrasted with our previous 101 

observations following amino acid starvation using the same cell system (11).  Glucose 102 

starvation failed to activate Baf A1-dependent LC3-II accumulation in both short (2 hour) and 103 

prolonged (18 hour) starvation experiments.  Furthermore, the mild changes in LC3-II 104 

following glucose starvation still occurred in ULK1/2 DKO MEF lines.   105 

We confirmed that amino acid starvation within 2 hours led to clear MTORC1 suppression 106 

(S6 phosphorylation levels) and LC3 conversion (Fig 1B).  Amino acid starvation was 107 

properly sensed as MTORC1 suppression in ULK1/2 DKO MEF, although LC3 conversion 108 

was not activated.  In contrast, 2 hours of glucose starvation promoted AMPK activation 109 

(acetyl CoA carboxylase (ACC) phosphorylation) in wildtype (WT) MEF, but little change in 110 

MTORC1 activation.  LC3-II was indeed formed following glucose starvation but 111 

independently of ULK1/2 function.  We interpret this change to represent a block in 112 

lysosomal flux, as discussed later in this report (Fig 10).    113 

To further clarify, we studied longer-term effects.  MTORC1 activity recovered after overnight 114 

amino acid starvation and cells showed dramatically low total LC3 protein levels, both in WT 115 

and ULK1/2 DKO MEF (Fig 1B).  In contrast, overnight glucose starvation led to mild AMPK 116 

activation and MTORC1 suppression, in both WT and ULK1/2 DKO cells.  As such, cells 117 

appear to shut down MTORC1, albeit slowly, following glucose starvation, which may reflect 118 

the AMPK- or RagA-dependent glucose sensing mechanisms previously reported (25, 26).  119 

LC3-II accumulated similarly in both cell types following prolonged glucose starvation.   120 

Together, these data suggest that only amino acid starvation activates a ULK1/2-dependent 121 

immediate autophagy response.  Prolonged amino acid starvation activates a further 122 

ULK1/2-independent degradative pathway that leads to LC3 clearance, ultimately leading to 123 

MTORC1 reactivation (27).  As we show later in this study (Fig 10), this likely represents 124 

amino acid-starvation-based activation of the lysosome.  Glucose starvation failed to robustly 125 

activate immediate or long-term autophagy degradative flux.  Since MEF generally showed a 126 
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strong requirement for survival growth factors, particularly during prolonged starvation, these 127 

incubations all contained dialysed serum and only studied effects from glucose or amino acid 128 

starvation.     129 

The complex regulatory effects of amino acid vs glucose starvation required further 130 

clarification so we tested autophagy membrane flux in MEF expressing tandem mRFP-GFP 131 

tagged LC3 (28) (Fig 2A).  We confirmed that 2 hour addition of Baf A1 alone in full-nutrient 132 

conditions de-acidified and revealed all the basal autophagosomes in resting cells.  Amino 133 

acid starvation of MEF for 2 hours produced mild increases in GFP-detectable (i.e. early) 134 

and RFP-detectable (i.e. total) autophagosomes.  Notably, amino acid starvation produced 135 

RFP(+) only membranes, which represent autophagosomes that acidify and mature into late 136 

degradative compartments.  Glucose starvation also led to mild changes in GFP- and RFP-137 

visible membranes but the level of response was significantly less than amino acid starvation 138 

upon quantification of cell populations (Fig 2B) and did not produce RFP(+) only 139 

autophagosomes arising from flux.   140 

In the presence of Baf A1, amino acid starvation for 2 hours led to strong accumulation of 141 

autophagosomes (visible in GFP and RFP due to global deacidification). In contrast, glucose 142 

starvation + Baf A1 produced a markedly lower level of autophagosome formation.  143 

Moreover, the amino acid starvation and Baf A1 responses at 2 hours were clearly blocked 144 

upon ULK1/2 DKO.  When the experiment was performed following 18 hour starvations, we 145 

detected a distinct pattern (Fig 2B). Baf A1 alone, or both starvation conditions (+Baf A1) all 146 

led to similar accumulation of GFP(+) and RFP(+) membranes.  Furthermore, this 147 

accumulation took place similarly even with ULK1/2 DKO.  These results suggested that only 148 

amino-acid starvation (in the short-term) stimulated canonical autophagy flux and that this 149 

response was strictly dependent on the ULK1/2 complex.  Upon prolonged (e.g. overnight) 150 

starvation, other slower-rate autophagy-related processes become more apparent but these 151 

do not display differential sensitivity to amino acid vs. glucose starvation and are ULK1/2-152 

independent.   153 

We further validated our findings using another imaging approach, detecting endogenous 154 

LC3-positive autophagosomes in starved WT MEF (Fig 2C).  Baf A1 alone (in control 155 

conditions) only led to small accumulation of basally forming autophagosomes.  LC3-positive 156 

autophagosome formation was strongly promoted by amino acid-, but not glucose-, 157 

starvation.  Since, activated ULK1/2 promotes autophagy by phosphorylating downstream 158 

signalling partners such as Beclin1 (6), we further confirmed that the short-term amino-acid 159 

dependent autophagy response was blocked upon Beclin1 silencing.   160 
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 161 

Differential nutrient responses in cancer cells 162 

The failure of glucose starvation to activate autophagy was puzzling so we investigated if 163 

this trend was conserved, particularly in cancer cells that exhibit high glucose catabolism.  164 

We found in a range of breast, ovarian and melanoma cancer cell lines that glucose 165 

starvation generally led to LC3-II accumulation, similar to cells with lysosomal inhibition via 166 

chloroquine (CQ) (Fig 3A).  This similarity was most obvious in 4T1, SKOV3 and OVCAR3, 167 

but was generally displayed in the other cell types.  By contrast, amino acid starvation under 168 

the same time-frame led to patterns of LC3 conversion and clearance.  MCF7 and A431 169 

were further studied as representative cell models showing clear nutrient-dependent 170 

differences. In both these cell types, overnight amino acid starvation led to strong flux and 171 

clearance of total LC3 and the sequestosome 1 /p62 autophagy adaptor protein (Fig 3B).  By 172 

contrast, overnight glucose starvation did not produce strong LC3 and p62 degradation. 173 

These results in cancer cells support our model for differential responses to amino acid vs. 174 

glucose starvation.  Since changes in levels of LC3 or p62 protein can arise from both 175 

autophagy and gene expression mechanisms, particularly in prolonged starvation (29), we 176 

further tested LC3B and p62/SQSTM1 transcript levels (Fig 3C).  Under short-term 177 

starvation, only glucose- (but not amino acid-) starvation led to mild LC3B and p62 up-178 

regulation in MCF7 cells.  A431 displayed a mild but distinct nutrient-dependent response.  179 

Under prolonged starvation, there was clearer up-regulation of LC3B and p62, particularly 180 

upon glucose starvation.  The nutrient-dependent difference was especially apparent in 181 

MCF7.  These data suggest that in the short term, amino acid starvation activates autophagy 182 

flux leading to loss of LC3 and p62 protein (but there is no gene down-regulation).  Upon 183 

prolonged timeframes, amino acid starvation produces some up-regulation but LC3 and p62 184 

degradation rates overwhelm.  In contrast, prolonged glucose starvation does not produce 185 

degradative flux and further stimulates a LC3 and p62 up-regulation response.  Lastly, we 186 

confirmed the differential autophagy flux by imaging A431 cells expressing mRFP-GFP-LC3 187 

(Fig 3D,E).  Similar profiles were observed, with Baf A1 (alone in control conditions) 188 

revealing basal autophagosome levels.  In short-term starvation, only amino acid-, but not 189 

glucose-, starvation promoted strong autophagosome formation.   190 

Amino acid starvation activates autophagy flux 191 

We further investigated the nutrient-dependent regulation of autophagy using HEK293 cells, 192 

which we previously used extensively to study ULK1 signalling (30, 31).  HEK293 cells 193 
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possess a high rate of basal autophagy, even under full nutrient conditions, as shown via 194 

clear LC3-II accumulation following lysosomal block with Baf A1 (Fig 4A, lane 2).  Starvation 195 

of amino acid (and serum) leads to increased LC3-II (lanes 1 vs. 3) and this effect is further 196 

apparent when Baf A1 is used to block autophagic flux (lane 4).  Addition of dialysed serum 197 

did not alter LC3-II accumulation (lanes 3 vs. 5) suggesting that cells were primarily sensing 198 

amino acid withdrawal.  Amino acid starvation (with or without serum) strongly inhibited 199 

MTORC1.  As observed above in multiple cell types, glucose (and serum) starvation led to 200 

some LC3-II formation but the extent was not as robust compared to amino acid starvation 201 

(lanes 3 vs. 6).  Furthermore, glucose starvation (+Baf A1) did not produce more LC3-II as 202 

compared to Baf A1 treatment alone (also shown in quantitation (Fig 4B)).  Glucose (and 203 

serum) starvation led to AMPK activation and also MTORC1 suppression.  However, 204 

supplementation of dialysed serum to glucose starvation restored MTORC1 activity and 205 

prevented LC3-II generation (lanes 6 vs. 8).  Therefore, starvation of just glucose alone 206 

produces minimal autophagy responses, consistent with our other data.  Serum starvation 207 

can activate autophagy to a certain extent, but this contribution is weak when directly 208 

compared with amino acid starvation.  209 

We and others have noted glucose-dependent autophagy effects, particularly following 210 

prolonged starvation (5, 11, 14, 19), so here, we investigated details in the time course of 211 

nutrient sensing.  In HEK293 cells, inhibition of the lysosome led to a gradual accumulation 212 

of LC3-II over 1-4 hours (Fig 4C).  Further starvation of amino acids led to significantly 213 

higher levels of rapid LC3-II formation.  Glucose starvation failed to activate LC3-II formation 214 

above the low level caused by lysosomal block alone.   215 

In these prolonged experiments, we noted mild LC3 and ACC accumulation upon overnight 216 

incubation of control cells maintained with full nutrients (Fig 4D).  In contrast, amino acid 217 

starvation triggered LC3 conversion within 2 hours, becoming more clear by 4 hours, which 218 

is consistent with other data.  By 18 hours of amino acid starvation, total LC3 levels 219 

markedly decreased due to continued degradation (also reflected by p62 reduction).  AMPK 220 

activity remained low during amino acid starvation. The parallel time course from glucose 221 

starvation was distinct, with less LC3 conversion and clearance, no p62 loss and rapid 222 

AMPK activation.   223 

Although different cell types display slightly varying responses, nutrient-dependent 224 

autophagy flux, as detected by RFP-GFP-LC3, has been consistent. In HEK293 cells (Fig 225 

4E), 2 hours of Baf A1 treatment alone showed the basal autophagosome levels.  Amino 226 

acid starvation produced significantly more GFP(+) and RFP(+) autophagosomes, under 227 

both +/- Baf A1 conditions.   228 
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 229 

Amino acid starvation stimulates autophagosome formation in a glucose-dependent 230 

manner  231 

As we established the nutrient-specific effects on autophagy flux, we further studied 232 

regulation of autophagosome formation.  We first investigated early autophagy factor 233 

recruitment by detecting the ULK1 complex, which translocates to initial ER-associated 234 

assembly sites.  We and others have previously reported clear formation of membranes 235 

using exogenous tagged ULK1 complex members (30, 32).  Here, we observed that cells 236 

maintained under full nutrients contained virtually no membranes staining for endogenous 237 

ULK1 (Fig 5A).  Amino acid starvation stimulated assembly of ULK1-positive membranes 238 

within 15 minutes and further increased over time (Fig 5B).  By contrast, glucose starvation 239 

did not stimulate ULK1-positive puncta.   240 

To study a later stage of autophagosome assembly, we detected endogenous patterns of 241 

p62/Sequestosome1, which is recruited to forming autophagy membranes via both LC3-242 

dependent and –independent mechanisms (33, 34).  Amino acid starvation induced p62-243 

positive membranes in a robust, rapid and time-dependent manner (Fig 5A,B).  In contrast, 244 

glucose starvation did not induce p62 membranes.  To confirm the p62 staining, we detected 245 

co-localisation with GFP-DFCP1.  In WT MEF, amino acid starvation stimulated the 246 

formation of DFCP1-positive autophagosomes with concentrated patches of PtdIns3P (Fig 247 

5C).  p62 puncta co-localised with GFP-DFCP1, intermingling with the patches of PtdIns3P 248 

on autophagosomes, suggestive of cargo recruitment.  The amino-acid dependent induction 249 

of p62 puncta could be blocked with the ULK1 inhibitor MRT68921 (35) (Fig 5D).  Therefore, 250 

the data suggest that amino acid starvation rapidly promotes ULK1 activation and 251 

translocation, thereby promoting downstream p62 recruitment and autophagosome 252 

formation. 253 

We further explored nutrient-dependency during autophagosome formation using p62 puncta 254 

as readout.  We and others have long used Earle’s balanced salt solution (EBSS) as a 255 

standard autophagy starvation medium (11, 30, 31).  Notably, EBSS lacks both amino acids 256 

and serum.  During the course of this study, we further clarified that serum starvation itself 257 

can mildly stimulate autophagy by suppressing MTORC1 activity (eg Fig 5A).  In HEK293, 258 

we also observed that serum deprivation leads to cytoskeletal changes but determined that 259 

trace amounts of supplemented serum (0.1%) maintained cell morphology and prevented 260 

cell detachment.  We confirmed that serum deprivation alone (from 10% to 0.1%) only mildly 261 

induces p62 puncta formation (Fig 5E).  By comparison, further starvation of amino acid (but 262 

 on M
arch 8, 2018 by U

N
IV

E
R

S
IT

Y
 O

F
 S

T
R

A
T

H
C

LY
D

E
http://m

cb.asm
.org/

D
ow

nloaded from
 

http://mcb.asm.org/


10 
 

not of glucose) strongly induced p62 puncta.  This difference between amino acid vs. 263 

glucose starvation was observed even when starvation was performed in the context of 10% 264 

dialysed serum.  Importantly, while amino acid starvation promoted p62 membranes, further 265 

removal of glucose (double-starvation) significantly blocked p62 puncta formation.  We 266 

further confirmed biochemically that glucose starvation inhibited the amino acid starvation 267 

signal from promoting LC3 lipidation (Fig 6A).  Therefore, glucose starvation blocked the 268 

otherwise strong induction from amino acid starvation for autophagosome formation.   269 

 Since amino acid and glucose starvation were having opposite effects on autophagy, we 270 

asked how these nutrients were being sensed.  As expected, glucose starvation led to 271 

AMPK activation and strong phosphorylation of ACC (Fig 6B).  This condition also increased 272 

phosphorylation of ULK1-Ser555.  By contrast, amino acid starvation led to suppression of 273 

MTORC1 signalling without strong AMPK activation (P-ACC).  Under amino acid starvation, 274 

we observed, as expected, decreased phosphorylation on ULK1-Ser757, but also decreased 275 

phospho-ULK1-Ser555.  Interestingly, double starvation of both amino acid and glucose led 276 

to MTORC1 inhibition together with AMPK activation, restoring ULK1-Ser555 277 

phosphorylation.  The other AMPK-regulated site, ULK1-Ser317 (5), showed generally 278 

steady levels throughout these starvation conditions.  Altogether, these data show that 279 

maximal autophagy activation is associated with dephosphorylation on both the ULK1-280 

Ser555 and Ser757 sites.   281 

Glutamine, leucine and arginine activate MTORC1 to inhibit autophagosome formation  282 

All data above highlighted the primacy of amino acids for autophagy regulation.  Certain 283 

amino acids, such as glutamine, leucine and arginine play key regulatory roles by interacting 284 

with specific cellular nutrient sensors to activate MTORC1 (36-39).  Here, we further tested 285 

roles of each of these key regulatory amino acids.  In control samples, HEK293 cells starved 286 

of all 20 amino acids showed MTORC1 suppression and LC3 lipidation (Fig 6C).  However, 287 

addback of glutamine + leucine + arginine to the starvation mixture prevented both MTORC1 288 

inactivation and LC3 lipidation.  Interestingly, addback of glutamine, leucine or arginine each 289 

singly did not have strong reversal effect as compared to all three regulatory amino acids 290 

added together.  Combination of leucine and arginine addback did reduce autophagy, but 291 

not as clearly as the three combined regulatory amino acids.  Addback of these regulatory 292 

amino acids required the presence of serum to activate MTORC1 and suppress autophagy 293 

(data not shown), revealing involvement of the growth factor-TSC1/2-Rheb pathway in 294 

combination with amino acid for MTORC1 activation.   295 
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We confirmed that addback of glutamine + leucine + arginine to the amino acid deprivation 296 

media also suppressed formation of p62-positive autophagosomes (Fig 6D,E).  To further 297 

test the ability of these 3 regulatory amino acids to control autophagy, we studied membrane 298 

translocation.  We confirmed that addback of glutamine + leucine + arginine (in the presence 299 

of serum) stimulated within 10 min the translocation of MTORC1 onto lysosomal 300 

compartments (Fig 7A).  To study the regulation of initiation, we monitored ULK1/2 complex 301 

localisation.  We confirmed translocation of endogenous ULK1 onto membrane puncta within 302 

~2 hours (Fig 7B).  Sites of initiation, likely connected to the ER, were generally juxtaposed 303 

but not co-localised to the lysosomal compartments.  Addback of glutamine + leucine + 304 

arginine caused ULK1 translocation off membrane puncta within 10 min, suggestive of rapid 305 

inactivation by the addition of regulatory amino acids.  Staining for endogenous ATG13 306 

showed identical results (Fig 7C).   307 

AMPK phosphorylates and inhibits ULK1 308 

We determined above that glucose starvation has the ability to suppress autophagy, even in 309 

the context of amino acid starvation cues, which promotes the process.  To investigate this 310 

mechanism further, we focussed on AMPK which is activated by glucose starvation.  To use 311 

a different approach, we used the compound A769662 activate AMPK (40).  A769662 clearly 312 

activated AMPK under both full-nutrient and amino-acid starvation conditions (Fig 8A).  313 

There was no adverse effects of A769662 on the MTORC1 pathway.  We next tested the 314 

effect of AMPK activation on amino acid starvation-driven autophagy flux using the RFP-315 

GFP-LC3 assay in HEK293 cells.  The addition of A769662 significantly inhibited both basal 316 

autophagosome formation under full-nutrients and autophagy stimulate by amino acid 317 

starvation (Fig 8B,C).  The effect of the AMPK activator was nearly identical to the effect of 318 

glucose withdraw on amino acid starvation (i.e. double starvation) (Fig 8D).  The addition of 319 

A769662 similarly inhibited the ability of amino acid starvation to promote ULK1 and p62 320 

puncta formation (Fig 9A).  These results support the notion that AMPK inhibits autophagy. 321 

AMPK regulates autophagy by directly phosphorylating ULK1 on multiple sites.  One set of 322 

highly conserved sites (mouse ULK1 S467, S555, T574, S637) has been implicated in 323 

autophagy-related mitochondrial homeostasis and cell survival (9).  To test the roles of these 324 

AMPK-dependent sites, we reconstituted ULK1/2 DKO MEF with either ULK1 WT or the 4SA 325 

(S467A, S555A, T574A, S637A) mutant (Fig 9B).  We next treated the reconstituted MEF to 326 

amino acid starvation +/- AMPK activation via A769662 and monitored p62-labeled 327 

autophagosome formation (Fig 9C,D).  Reconstitution with WT-ULK1 rescued the formation 328 

of starvation-induced p62 puncta.  This autophagy response in WT-ULK1 reconstituted MEF 329 

was significantly inhibited by A769662.  Interestingly, MEF reconstituted with 4SA-ULK1 330 
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showed a significantly inhibited response to amino acid starvation.  A pattern consistent with 331 

this was also observed when studying WT vs. 4SA reconstituted MEF in the context of single 332 

(-AA) vs. double (-AA-Glc) starvation (Fig 9E).  Therefore, phosphorylation of these 4 sites 333 

on ULK1 was required for AMPK to inhibit the autophagy response.  However, loss of these 334 

sites also impaired the normal function of ULK1 during amino acid starvation-induced 335 

autophagy.  336 

AMPK and glucose starvation inhibit lysosome activity  337 

Our data above highlighted how amino acid starvation was best at activating autophagy-338 

lysosomal flux as seen through eventual clearance of LC3 and p62 proteins.  Since 339 

MTORC1-dependent activation of lysosomal activity has been reported (41), we investigated 340 

the differential nutrient dependency on this late stage of autophagy.  We confirmed that 341 

amino acid starvation led to robust lysosomal activation in HEK293 and HeLa cells as 342 

detected by lysotracker red staining for acidified vesicles (Fig 10A).   Quantification of 343 

staining indicated starvation-induced lysosomal acidification, which could be effectively 344 

quenched by treatment with weak base CQ or more strongly, with vaculolar ATPase 345 

(vATPase) inhibitor Baf A1 (Fig 10B), as seen elsewhere (29).   346 

In testing the different nutrients, we found that serum starvation alone led to mild acidification 347 

of the lysosome, for example in both HeLa (Fig 10C,D) and HEK293 cells (Fig 10E).  348 

However, further withdrawal of amino acids markedly led to strong lysosomal acidification.  349 

In contrast, glucose starvation did not promote acidification.  We found that the preferential 350 

lysosomal activation from amino acid starvation was independent of autophagy, showing 351 

similar robust effects in WT and ATG5 KO MEF (Fig 10F,G).    Lysosomes in ATG5KO MEF 352 

appeared swollen compared to those in WT.  However, even these swollen vesicles 353 

markedly increased lysotracker staining following amino acid starvation.  The ability of amino 354 

acid starvation to activate lysosomal acidification was also independent of the ULK1 355 

signalling, as seen in ULK1/2DKO and FIP200 KO MEF (Fig 10H).   356 

Our data above also highlighted how glucose starvation inhibited amino acid-dependent 357 

cues that drive autophagosome formation.  We tested this relationship for lysosomal 358 

acidification.  Indeed, we found that while amino acid starvation stimulated lysosomes, 359 

acidification was blocked when glucose was further removed using double starvation 360 

medium (Fig 10I).  Addback of glucose to the double starvation medium (to typical levels: 1 361 

g/L) restored acidification, indicating that cellular glucose levels promote lysosomal function.  362 

As one main effect, glucose starvation activates AMPK.  To test if this pathway regulates the 363 

lysosome, we used the AMPK activator drug.  Addition of A769662 had little effect on basal 364 
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signals, but significantly inhibited the ability of amino acid starvation to promote lysosome 365 

acidification (Fig 10J-L).  These results suggest that glucose starvation also inhibits 366 

lysosomal / late-stage autophagy via AMPK. 367 

  368 
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Discussion 369 

Mammalian cells need to rapidly adapt when extracellular nutrients change and a part of this 370 

metabolic homeostasis is autophagy (1, 42).  Cancer cells are particularly distinct for their re-371 

configured metabolic profile that features high consumption of glucose and amino acids such 372 

as glutamine (43, 44).  In this regard, we have long been intrigued by the mechanisms 373 

linking amino acid and glucose sensing to autophagy, particularly in cancer contexts.  ULK1 374 

appears to be a key hub receiving phosphorylation signals from MTORC1 and AMPK (5, 10).  375 

We previously investigated the different features of non-canonical ULK1/2-independent 376 

autophagy in the context of prolonged glucose starvation (11, 14).  Here, upon further 377 

exploration, we find surprisingly that only amino acid starvation activates rapid and robust 378 

autophagy flux.  In contrast, glucose starvation produced autophagy readouts more 379 

resembling a lysosomal block, which was prevalent in a wide range of normal and cancer 380 

cell types.   381 

Amino acid and glucose differentially control autophagosome formation  382 

Differences in nutrient sensing could be traced to the level of autophagy initiation.  Only 383 

amino acid starvation promptly promoted and translocation of ULK1 to membrane assembly 384 

sites.  This is likely the key early regulatory event that allows phosphorylation downstream 385 

substrates such as ATG4B, ATG9 and ATG13 (35, 45-48).  This is clearly a partial list of all 386 

the ULK1 substrates so far identified (as previously highlighted (7, 49)).  However, this 387 

translocation critically allows the ULK1/2 complex to phosphorylate Beclin1 thereby directing 388 

VPS34 activity and localised PtdIns3P generation at autophagosome assembly sites (6).  389 

Previously, we found only amino acid starvation stimulated translocation of PtdIns3P-binding 390 

WIPI-2 to autophagy membranes (11).  In further agreement, we here found that amino acid 391 

(but not glucose) starvation rapidly promoted high numbers of autophagosomes containing 392 

LC3 and p62.  Consistent with established thinking, MTORC1 played the predominant role 393 

for autophagosome regulation.  Re-addition of key regulatory amino acids glutamine, leucine 394 

and arginine to starved cells re-activated MTORC1 and blocked the autophagy.  Thus, the 395 

main 3 regulatory amino acids are sufficient to control autophagosome assembly.   396 

When considering autophagy and the different nutrients, our data highlighted how time was 397 

a key variable.  The clearest differences between amino acid vs. glucose starvation were 398 

observed during the immediate rapid autophagy response (e.g. up to 2 hours).  Therefore, 399 

amino acid-dependent MTORC1-ULK1 signalling thus serves to primarily promote rapid high 400 

rates of LC3 conversion and autophagosome assembly.  During prolonged starvation 401 

experiments, we observed other ULK1/2-independent pathways, which we interpret to 402 
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function at lower rates, becoming apparent in longer timeframes.   Cellular LC3 levels are 403 

effectively cleared upon prolonged amino acid starvation, likely reflecting sustained 404 

activation of lysosomal function.  Basal autophagosome formation was seen to be ULK1/2-405 

independent after prolonged block of flux (i.e. Baf A1).  Serum starvation also produced mild 406 

effects on autophagosome formation, MTORC1 activity and lysosomal acidification.  We 407 

suggest that considerations of timeframe and serum levels may explain some of the 408 

observations on glucose starvation-induced, non-canonical, ULK1/2-independent autophagy 409 

(5, 14, 17, 19).  Overall, amino acid and glucose starvation produced clearly different effects 410 

across many cell types.   411 

AMPK and glucose starvation signals can dominate and block autophagy 412 

Interestingly, while amino acid starvation stimulated autophagy, further removal of glucose in 413 

the amino acid-free condition blocked autophagosome formation.  Previously, it had been 414 

proposed that autophagy initiation in both mammalian and yeast cells require threshold 415 

levels of cellular energy (20, 23, 50).  Glucose starvation in our experiments clearly reduced 416 

the energy charge in cells as reflected by AMPK activation and phosphorylation of the ULK1-417 

Ser555 site.  Altogether, highest levels of autophagy were associated with amino acid 418 

deprivation and hypo-phosphorylation of ULK1 at Ser555 and Ser757.  As such, canonical 419 

rapid autophagy seems to be driven by suppression of MTORC1 in association with low 420 

AMPK activity.   421 

We were next able to show that activation of AMPK using a drug was able to suppress the 422 

otherwise positive signal of amino acid starvation for autophagosome formation.  This brake 423 

mechanism on autophagy appears to require the set of 4 conserved AMPK phosphorylation 424 

sites on ULK1 (including Ser555), which had been previously validated functionally (9).  425 

Therefore, high levels of AMPK-mediated phosphorylation on these sites may serve to inhibit 426 

ULK1.  However, the relationship is not binary since 4SA mutation of these sites also 427 

prevented ULK1 from promoting normal autophagy.  One possibility is that transient or sub-428 

threshold levels of AMPK phosphorylation on these sites is needed for proper dynamic 429 

regulation of ULK1.  Sustained high levels of modification may serve as a signal to block 430 

ULK1.  Alternatively, one of the sites in this set may function as the brake but the 4SA 431 

substitutions together may inhibit other positive roles although this will require more 432 

mapping.  Indeed, one of the sites in 4SA is Ser637 (638 in human), which is also 433 

coordinately regulated by MTORC1 and PP2A in response to nutrients (10, 51).  ULK1-434 

Ser555 phosphorylation may provide a switch from canonical autophagy to mitophagy-435 

specific pathways following AMPK activation (8, 9).   436 
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Amino acid and glucose differentially control the lysosome 437 

We consistently saw that amino acid starvation, especially when prolonged, generated LC3 438 

conversion, LC3 breakdown and MTORC1 reactivation.  By contrast, glucose starvation led 439 

to only slow accumulation of lipidated LC3-II and never re-stimulated MTORC1, which we 440 

interpreted to reflect overall lysosomal suppression.  This model suggests further 441 

considerations that may explain the LC3 accumulation observed in other examples of 442 

glucose starvation (5, 14, 17, 19).   443 

Autophagy flux depends on fusion with the lysosome to enable content degradation.  444 

Lysosomal function can be up-regulated following gene expression re-programming and 445 

organelle biogenesis driven by TFEB family transcription factors (52).  Alternatively, existing 446 

lysosomes can be activated by promoting lumenal acidification, which has been reported via 447 

both MTORC1-dependent and -independent mechanisms (41, 53).  Here, we found that 448 

serum starvation promoted some acidification but strongest lysosomal activation occurred 449 

when both serum and amino acids were withdrawn.   This lysosomal response occurred 450 

rapid and independently of the ATG5 and ULK1/2 autophagy pathways.  Glucose starvation 451 

did not stimulate lysosomal acidification, consistent with the other data suggesting low 452 

autophagic flux.  Looking at nutrient combinations, removal of glucose prevented amino acid 453 

and serum starvation from promoting lysosome acidification.  Furthermore, activation of 454 

AMPK was sufficient to suppress lysosomal activation.  Therefore, AMPK has ULK1-455 

dependent pathways to control early autophagy steps and distinct pathways to control the 456 

lysosome.   457 

Lysosomal acidification is driven by vATPase, which interestingly displays nutrient-458 

dependent assembly of its V0 and V1 domains (54).  Starvation of amino acids has been 459 

shown to promote vATPase assembly, although roles of MTORC1 in this mechanism remain 460 

controversial (41, 53, 55).  Conversely, vATPase assembly has been shown in yeast and 461 

mammals to require glucose (56, 57).  Here, we identify an additional pathway involving 462 

AMPK activity to suppress lysosomal function.  Therefore, vATPase may be blocked via 463 

multiple mechanisms to produce a reduction in autophagy-lysosomal flux upon glucose 464 

starvation. 465 

In conclusion, our studies provide an integrated view on how serum, amino acid and glucose 466 

independently control early and late stages of autophagy.  For both autophagosome 467 

formation and lysosomal acidification, amino acid starvation provided the strongest activating 468 

signal.  Surprisingly, both early and late stages of autophagy were not activated by glucose 469 

starvation and moreover, glucose starvation had overall inhibitory effects on both pathways.  470 
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The inhibitory effects of glucose starvation were determined to take place via distinct AMPK-471 

dependent mechanisms on autophagy initiation and lysosomal activity.  The mechanisms 472 

characterised here may help coordinate the physiological homeostasis of amino acids, 473 

glucose and autophagy, as seen in neonatal mice (26).  Our findings here also illustrate that 474 

different nutrient starvations cannot all be generalised to activate autophagy.   475 

  476 

Materials and Methods 477 

Cell culture and treatments 478 

ULK1/2 DKO MEF (11); WT MEF expressing GFP-DFCP1 (ZFYVE1) (11); FIP200 KO (58) 479 

and ATG5 KO MEF (and matched WT) (59) have been described.  HEK293A cells were 480 

maintained as previously described (31).  MEF, HEK293A, HeLa, 4T1, SKOV3, OVCAR, 481 

B16-F0 and A431 were all maintained in DMEM with 4.5g/L glucose (Lonza #BE12-614F) 482 

supplemented with 10% fetal bovine serum (FBS) (Labtech #FCS-SA), 4mM L-Glutamine 483 

(Lonza #BE17-605E), and 100U/mL Penicillin/Streptomycin (Lonza #DE17-602E) (full-484 

nutrient media).  MCF7 were cultured in full-nutrient media supplemented with 0.015 mg/ml 485 

insulin.   486 

Where indicated, WT and ULK1/2 DKO MEF were transiently transfected with tandem 487 

tagged mRFP-EGFP-LC3 reporter (28).  Alternatively, HEK293A and A431 cell lines were 488 

generated stably expressing pBABE-puro mCherry-EGFP-LC3B (Addgene plasmid # 489 

22418)(60).  A HEK293A stable cell line was generated expressing LAMP1-mRFP-FLAG 490 

(Addgene plasmid # 34611) (61).  MEF with stable knockdown of Beclin1 were generated 491 

using the pLKO.1 construct for mouse BECN1 clone id:  TRCN0000087290.  In 492 

reconstitution experiments, ULK1/2 DKO MEF were stably transduced using pLPC puro-493 

Myc-ULK1 WT or 4SA (S467A, S555A, T574A, S637A) (subcloned from Addgene plasmids 494 

# 27626 and 27628) (9). 495 

Cells were washed 1x with PBS and exchanged into starvation media.  For amino (and 496 

serum) starvation, we used Earle’s balanced salt solution (EBSS) (Sigma E2888).  For 497 

glucose (and serum) starvation, we used glucose-free DMEM media containing 4mM L-498 

Glutamine (Thermo Fisher 11966-025).  For serum starvation, used full-nutrient DMEM 499 

described above but lacking FBS.  For amino acid and glucose (double) starvation, we used 500 

PBS (Lonza #BE17-513F) supplemented with 0.22% sodium bicarbonate (Sigma S8761) 501 

and phenol red.  To study glucose addback, we used PBS containing 1 g/L glucose (Lonza 502 

#04-479Q) supplemented with 0.22% sodium bicarbonate and phenol red.  Where indicated, 503 
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dialysed FBS (Sigma F0392) was supplemented.  Where indicated 4 mM glutamine (Lonza 504 

#BE17-605E), 0.8 mM leucine (Sigma L8912) and 0.4 mM arginine (Sigma A8094) were 505 

supplemented.  Some conditions used 10nM Bafilomycin A1 (Tocris Bioscience) or 25μM 506 

chloroquine (Sigma) to inhibit the lysosome.  AMPK was activated using 50 μM A769662 507 

(Tocris Bioscience).  MRT68921 (35) was a kind gift from B. Saxty (LifeArc, formerly MRC 508 

Technology). 509 

Immunoblot analysis 510 

Cell lysates were prepared as described previously (11) and analysed using on 4-12% or 511 

10% NuPAGE gels resolved in MES running buffer (Thermo Fisher scientific). Membranes 512 

were stained using the following antibodies.  LC3B:  clone 5F10 (Nanotools #0231-100); 513 

p62/SQSTM1 (BD Bioscience 610832);  phospho-S6 ser240/244 (Cell signalling 2215);  total 514 

S6 (54D2) Mouse mAb (Cell signalling 2317);  phospho-acetyl CoA carboxylase (ACC) 515 

ser79 (Cell signalling 3661); total ACC (Cell signalling 3662);  phospho-ULK1 ser757 (Cell 516 

signalling 6888);  phospho-ULK1 ser555-D1H4 (Cell signalling 5869); phospho-ULK1 517 

ser317-D2B6Y (Cell signalling 12753); total ULK1-D8H5 (Cell signalling 8054); Actin: Ab-5 518 

(BD Bioscience # 612656).  Detection was via anti-mouse or anti-rabbit Dylight-coupled 519 

secondary antibodies and Licor Odyssey infrared scanning.   520 

Microscopy 521 

After treatments, cells were fixed and stained using the following antibodies:  anti-human 522 

p62/SQSTM1 (BD Bioscience 610832); anti-mouse p62/SQSTM1 Guinea pig polyclonal 523 

(Progen #GP62-C);  LC3B (Cell signalling 2775); MTOR-7C10 (Cell signalling  2983);  524 

ATG13- E1Y9V (Cell signalling 13468);  ULK1-D8H5.  Cell images were captured by 525 

confocal microscopy (Leica, TCS SP5, HCX PL APO CS-63x-1.4NA objective and HyD 526 

GaAsP detection).  Puncta/cell were quantified from confocal scans or directly by 527 

epifluorescent imaging, depending on stain.  To detect lysosomal acidification, cells were 528 

treated as indicated with 50nM Lysotracker Red DND-99 (Thermo Fisher L7528) added 529 

during the final 30mins of incubation.  Cells were fixed with paraformaldehyde, stored 530 

overnight, and imaged by confocal microscopy.  Staining intensity was quantified from 531 

cytoplasmic regions of interest from multiple cells per field from multiple fields per sample. 532 

Quantification of autophagosome puncta and lysotracker staining representative of multiple 533 

experiments as detailed in legends.   534 

Transcript analysis 535 
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RNA was extracted from cells using ISOLATE II RNA Mini columns (Bioline).  Expression 536 

analysis was carried out using the Luna One-Step RT-qPCR kit and the following primers: 537 

Hs LC3B: forward ACG CAT TTG CCA TCA CAG TTG; reverse TCT CTT AGG AGT CAG 538 

GGA CCT TCA G;  Hs p62/SQSTM1: forward CCG TGA AGG CCT ACC TTC TG; reverse 539 

TCC TCG TCA CTG GAA AAG GC;  Hs GAPDH: forward CTA TAA ATT GAG CCC GCA 540 

GCC; reverse ACC AAA TCC GTT GAC TCC GA.  Gene fold-change normalised to GAPDH 541 

was calculated using double-delta Ct analysis. 542 

Statistics 543 

Quantitative data were managed using GraphPad Prism and Origin Pro; and analysed using 544 

unpaired T-test (for 2-way comparisons) or one-way ANOVA with Tukey post-test (multiple 545 

comparisons) as appropriate.  In box whisker plots, boxes show 25th, 75th percentiles and 546 

mean. Whiskers show standard deviation.  (X) indicate 1st and 99th percentiles. 547 
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Figure 1.  Glucose starvation does not activate autophagy flux.  728 

(A) Wildtype or ULK1/2 double knockout (DKO) MEF were exposed to glucose starvation (-729 

Glc), in the presence of Bafilomycin A1 (Baf A1) as indicated for 2 or 18hrs. Starvation 730 

conditions contained 10% dialysed FBS.  Cell lysates were analysed for LC3B lipidation and 731 

quantified as LC3-II/LC3-I (n=3 experiments +/-SEM).  Two different lines of ULK1/2 DKO 732 

MEF were analysed.    733 

(B) Cells were exposed to amino acid (-AA) or glucose starvation for the incubated times.  734 

Starvation conditions contained 10% dialysed FBS.   Cell lysates were analysed for LC3B, 735 

phospho- or total acetyl CoA carboxylase (ACC); and phospho- or total ribosomal S6 (S6).  736 

Quantification from n=3 experiments (+/-SEM).  P<  (*) 0.05;  (**) 0.01;  (***) 0.001; (****) 737 

0.0001  by T-test. 738 

 739 

 740 

Figure 2.  Amino acid starvation activates rapid beclin1-dependent autophagy flux. 741 

(A) Wildtype MEF expressing mRFP-EGFP-LC3B were exposed to full-nutrient control 742 

media (FM), amino acid (-AA) or glucose (-Glc) starvation, in the presence of Bafilomycin A1 743 

(Baf A1) as indicated for 2 hrs.  Starvation conditions contained 10% dialysed FBS.  744 

Autophagy membranes visible in the GFP and RFP channels are shown.  Arrowheads show 745 

RFP(+) only (i.e. GFP-quenched, late) autophagosomes.  Scale bar: 10 µm. 746 

(B)  GFP- and RFP- positive autophagy membranes were quantified in wildtype or ULK1/2 747 

DKO MEF expressing mRFP-EGFP-LC3B following starvation conditions 1-6 for 2 or 18 hrs.  748 

Quantification using 30-40 cells from n=3 (2h experiment); or 20-32 cells from n=2 (18h 749 

experiment) (+/-SEM).   P<  (*) 0.05;  (***) 0.001;  by unpaired T-test, comparing conditions 3 750 

vs. 4; 5 vs. 6. 751 

(C)  MEF (wildtype or with stable Beclin1 knockdown) were starved as indicated +Baf A1 for 752 

2 hrs.  Starvation conditions contained 10% dialysed FBS.  Endogenous LC3B-positive 753 

autophagy membranes were detected and quantified in 120 cells (from n=2 experiments). 754 

Beclin1 knockdown efficiency was confirmed.  (***) P<0.001;  by ANOVA, Tukey’s post-test. 755 
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Figure 3.  Lack of autophagy flux following glucose starvation is conserved in cancer 757 

cells.   758 

(A) The indicated cell types were incubated with glucose or amino acid starvation for 3 759 

hours.  As control, chloroquine (CQ, 25μM) was added to cells in full-nutrient conditions.  760 

(B) MCF7 or A431 cells were treated to prolonged starvation (24hrs) as indicated.  761 

Starvation conditions contained 10% dialysed FBS.  Cell lysates were analysed for LC3B, 762 

Sequestosome 1/p62 protein levels and S6 protein phosphorylation.  Data representative of 763 

3 experiments. 764 

(C) MCF7 or A431 cells were starved as indicated for 3 or 24 hrs.  Transcript levels for LC3B 765 

and p62 were quantified (expressed as fold-change normalised to GAPDH; N=3 +/-SEM).  766 

Significant where indicated: P<  (*) 0.05;  (**) 0.01;  (***) 0.001;  (****) 0.0001;   by ANOVA, 767 

Tukey’s post-test. 768 

(D,E)  A431 cells stably expressing mCherry-EGFP-LC3B were starved as indicated +Baf A1 769 

for 2 hrs. Starvation conditions contained 10% dialysed FBS.  GFP- and RFP- positive 770 

autophagy membranes were quantified in 120 cells from n=3 experiments (+/-SEM). (****) 771 

P<0.0001 by unpaired T-test;  comparing –AA vs. –Glc conditions.  Scale bar: 10 µm. 772 

  773 

 on M
arch 8, 2018 by U

N
IV

E
R

S
IT

Y
 O

F
 S

T
R

A
T

H
C

LY
D

E
http://m

cb.asm
.org/

D
ow

nloaded from
 

http://mcb.asm.org/


26 
 

Figure 4.  Amino acid starvation triggers dephosphorylation of ULK1 serine 555 and 774 

autophagy.  775 

(A) HEK293A cells were incubated under amino acid or glucose starvation conditions for 2 776 

hrs.  Where indicated, Bafilomycin A1 or 10% dialysed FBS were added.  Immunoblotting 777 

detected LC3B lipidation, P-ACC and P-S6 levels in lysates.   778 

(B) Quantification of LC3B lipidation ratios for n=3 experiments +/- SEM.   (**) P < 0.01 779 

unpaired T-test.  780 

(C) HEK293A cells were starved of amino acid or glucose for the indicated times.  All 781 

conditions contained Bafilomycin A1.  Quantification for n=3 experiments +/- SEM.  P<  (*) 782 

0.05;  (**) 0.01; by ANOVA, Tukey’s post-test, comparing UT to –AA conditions. 783 

(D) HEK293A cells were incubated under amino acid or glucose starvation for indicated 784 

times. Starvation conditions contained 10% dialysed FBS.  Parallel wells of control cells 785 

were replenished with full nutrient media at the start of incubation.  Cell lysates were 786 

analysed for ULK1 serine 555 phosphorylation, P-ACC, LC3B and p62 levels.  787 

Representative quantification shown below phospho-blots.  Quantification of p62 788 

degradation and LC3B ratios for n=3 experiments +/- SEM.  (***) P < 0.001 by ANOVA, 789 

Tukey’s post-test.  790 

(E) HEK293A stably expressing mCherry-EGFP-LC3B were incubated in the indicated 791 

starvation conditions (1-6) for 2 hrs.  Starvation conditions contained 0.1% dialysed FBS.  P<  792 

(**) 0.01;  (****) 0.0001;  by unpaired T-test, comparing conditions 3 vs. 4; 5 vs. 6.  Scale bar: 793 

10 µm. 794 
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Figure 5. Glucose starvation inhibits autophagosome formation.     796 

(A) HEK293A cells were incubated under amino acid or glucose starvation for 2 hours.  797 

Starvation conditions contained 0.1% dialysed FBS.  Cells were stained for endogenous 798 

ULK1- or p62-labelled autophagosomes.  Scale bar: 10 µm. 799 

(B) HEK293A cells were starved as in (A) for times indicated.  Quantification of ULK1 and 800 

p62 puncta/cell.  Each box represents n=38 cells, representative of 2 experiments.   801 

(C) Wildtype MEF expressing GFP-DFCP1 were starved of amino acids as in (A) for 2 hours.  802 

Cells were stained for endogenous p62 puncta.  Arrow points to autophagosome shown in 803 

zoom. Scale bar: 10 µm. 804 

(D) HEK293A cells were starved of amino acids for 2 hours.  Starvation conditions contained 805 

0.1 or 5% dialysed FBS; or addition of MRT68921 (10μM) as indicated.  Each box 806 

represents n=40 cells, representative of 2 experiments.  (****) P<0.0001 by ANOVA, Tukey’s 807 

post-test. 808 

(E) HEK293A cells were starved of amino acids, glucose, or both together, for 2 hours.  809 

Dialysed serum concentrations were also varied during starvation as indicated.  Each box 810 

represents n=40-50 cells, representative of 2 experiments.  (****) P<0.0001 by ANOVA, 811 

Tukey’s post-test. 812 

  813 

 on M
arch 8, 2018 by U

N
IV

E
R

S
IT

Y
 O

F
 S

T
R

A
T

H
C

LY
D

E
http://m

cb.asm
.org/

D
ow

nloaded from
 

http://mcb.asm.org/


28 
 

Figure 6. Differential effects of glucose and amino acids (glutamine, leucine and 814 

arginine) on autophagy signalling.    815 

(A) HEK293A cells were starved of amino acids, glucose, or both together, for 2 hours.   816 

Starvation conditions contained 10% dialysed FBS.  Bafilomycin A1 was included as 817 

indicated. Cell lysates were analysed for LC3B lipidation and quantified from n=3 818 

experiments +/- SEM.  (*) P<0.05 by unpaired T-test. 819 

(B)  HEK293A cells were starved as in (A) and analysed for P-ACC, P-S6 and 820 

phosphorylation at the indicated ULK1 sites.  Representative quantification shown below 821 

phospho-blots.   822 

(C) HEK293A cells were starved of amino acids (in the presence of 10% dialysed FBS).  823 

Where indicated, starvation media contained Bafilomycin A1; and addback of amino acids 824 

glutamine (Q), leucine (L) or arginine (R).  Data representative of n=3 experiments.   825 

(D,E) HeLa cells were starved of amino acids (in the presence of 5% dialysed FBS) with 826 

addback of amino acids as indicated. Endogenous p62 puncta were analysed.  Scale bar: 10 827 

µm. (D) Each plot represents n=40 cells, representative of 2 experiments. (****) P<0.0001 by 828 

unpaired T-test.  829 

 830 

 831 

Figure 7.  Glutamine, leucine and arginine activate MTORC1 and inhibit ULK1 complex 832 

translocation to autophagosome assembly sites.    833 

HEK293A cells stably expressing LAMP1-mRFP were starved of amino acids (for 2 hrs), or 834 

starved for 110 min followed by 10 min re-supplementation of glutamine, leucine and 835 

arginine (in the presence of 5% dialysed FBS).  Fixed cells were stained for endogenous (A) 836 

MTOR, (B) ULK1, or (C) ATG13.  Arrows in zoomed insets show: (A) MTOR localised on 837 

lysosomal membranes in response to glutamine, leucine and arginine; (B) and (C), 838 

localisation of the ULK1 complex on autophagosome assembly sites juxtaposed to 839 

lysosomal membranes in response to amino acid starvation. Scale bars: 10 µm.   840 
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Figure 8.  Inhibition of autophagosome formation by AMPK. 842 

(A) HEK293A cells were starved of amino acids in the presence or absence of A769662 (50 843 

µM) for 2 hours.  Starvation conditions contained 5% dialysed FBS.  Cell lysates were 844 

analysed for phosphorylation of ACC and S6.  845 

(B) HEK293A stably expressing mCherry-EGFP-LC3B were incubated in starvation 846 

conditions (1-5) for 2 hrs. Starvation conditions contained 0.1% dialysed FBS.  Scale bar: 10 847 

µm.   848 

(C) Quantification of (B). Each plot represents 135 cells +/- SEM from n=3 experiments. **** 849 

P<0.0001 by unpaired T test; comparing conditions 2 vs 3, and 4 vs 5 (for both GFP and 850 

RFP quantifications). 851 

(D) HEK/ mCherry-EGFP-LC3B cells as in (B) were starved of amino acids, or amino acid 852 

and glucose together, for 2 hours.  Starvation conditions contained 0.1% dialysed FBS.  853 

Each plot represents 45 cells +/- SEM, representative of 3 experiments.  **** P<0.0001 by 854 

unpaired T test; comparing –AA vs double starved conditions (for both GFP and RFP 855 

quantifications). 856 
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Figure 9.  Phosphorylation of ULK1 by AMPK inhibits autophagosome formation. 858 

(A) HEK293A cells were starved of amino acids in the presence or absence of A769662 (50 859 

µM) for 2 hours.  Starvation conditions contained 0.1% dialysed FBS.  Fixed cells were 860 

stained for endogenous p62- or ULK1- autophagosomes and quantified.  Each plot 861 

represents 135 cells from n=3 experiments. **** P<0.0001 by unpaired T test. 862 

(B)  ULK1/2 DKO cells were reconstituted with Myc-ULK1: wildtype or 4SA (S467A, S555A, 863 

T574A, S637A).  Expression levels were confirmed by immunoblotting with anti-ULK1 864 

antibody.   865 

(C)  ULK1/2 DKO cells reconstituted with wildtype or 4SA Myc-ULK1 were starved of amino 866 

acids in the presence or absence of A769662 for 2 hours.  Starvation conditions contained 867 

10% dialysed FBS.  Fixed cells were stained for endogenous p62 puncta.  Scale bar: 10 µm.   868 

(D) Experiment in (C) was quantified.  Each plot represents 90-135 cells from n=3 869 

experiments.  (***) P < 0.001 by ANOVA, Tukey’s post-test.  870 

(E) Cells as in (C) were starved of amino acids, or amino acid and glucose together, for 2 871 

hours.  Starvation conditions contained 10% dialysed FBS.  Each plot represents 135 cells 872 

from n=3 experiments.  (***) P < 0.001 by ANOVA, Tukey’s post-test. 873 

874 
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Figure 10.  Glucose starvation and AMPK inhibit lysosomal acidification. 875 

(A,B) HEK293A cells were starved of amino acids for 2 hours and stained using Lysotracker 876 

red DND-99.  Starvation contained 0.1% dialysed FBS.  Where indicated, starvation included 877 

CQ or Bafilomycin A1.  Lysotracker staining intensity per cell was quantified from confocal 878 

images (arbitrary units).  Each box represents n=60 cells, representative of 4 experiments.   879 

(C) HeLa cells were starved of serum, amino acids or glucose for 2 hours and analysed for 880 

lysotracker staining.  Amino acid and glucose starvation conditions contained 0.1% dialysed 881 

FBS.    882 

(D) Quantification of (C).  Each box represents n=50-60 cells, representative of 4 883 

experiments.   884 

(E) Experiment in (C,D) repeated in HEK293A cells.  Each box represents n=50-60 cells, 885 

representative of 4 experiments.   886 

(F,G)  Wildtype or ATG5 knockout MEF were starved and analysed as in (C).  Each box 887 

represents n=40-50 cells, representative of 5 experiments.   888 

(H)  ULK1/2 DKO or FIP200 KO MEF were starved of amino acids and analysed as in (C,D).  889 

Each box represents n=270-320 cells from 3 experiments.   890 

(I)  HEK293A cells were starved of amino acids, or amino acid and glucose together, for 2 891 

hours as in (C).  Where indicated, the double-starvation condition contained addback of D-892 

glucose (1 g/L).  Each box represents n=60 cells, representative of 4 experiments.  893 

(J,K)  Wildtype MEF (or HEK293A (L)) were starved of amino acids in the presence or 894 

absence of A769662 (50 µM) for 2 hours and analysed as in (C,D).  Each box represents 895 

n=120 cells from 2 experiments.    **** P<0.0001 by unpaired T test. Scale bars: 20 µm.   896 
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