71 research outputs found
Recommended from our members
Heating experiments of the Tagish Lake meteorite: Investigation of the effects of short-term heating on chondritic organics
We present in this study the effects of short-term heating on organics in the Tagish Lake meteorite and how the difference in the heating conditions can modify the organic matter (OM) in a way that complicates the interpretation of a parent bodyâs heating extent with common cosmothermometers. The kinetics of short-term heating and its influence on the organic structure are not well understood, and any study of OM is further complicated by the complex alteration processes of the thermally metamorphosed carbonaceous chondritesâpotential analogues of the target asteroid Ryugu of the Hayabusa2 missionâwhich had experienced posthydration, short-duration local heating. In an attempt to understand the effects of short-term heating on chondritic OM, we investigated the change in the OM contents of the experimentally heated Tagish Lake meteorite samples using Raman spectroscopy, scanning transmission X-ray microscopy utilizing X-ray absorption near edge structure spectroscopy, and ultraperformance liquid chromatography fluorescence detection and quadrupole time of flight hybrid mass spectrometry. Our experiment suggests that graphitization of OM did not take place despite the samples being heated to 900 °C for 96 h, as the OM maturity trend was influenced by the heating conditions, kinetics, and the nature of the OM precursor, such as the presence of abundant oxygenated moieties. Although both the intensity of the 1s Ï* exciton cannot be used to accurately interpret the peak metamorphic temperature of the experimentally heated Tagish Lake sample, the Raman graphite band widths of the heated products significantly differ from that of chondritic OM modified by long-term internal heating
Bright Stuff on Ceres = Sulfates and Carbonates on CI Chondrites
Recent reports of the DAWN spacecraft's observations of the surface of Ceres indicate that there are bright areas, which can be explained by large amounts of the Mg sulfate hexahydrate (MgSO46(H2O)), although the identification appears tenuous. There are preliminary indications that water is being evolved from these bright areas, and some have inferred that these might be sites of contemporary hydro-volcanism. A heat source for such modern activity is not obvious, given the small size of Ceres, lack of any tidal forces from nearby giant planets, probable age and presumed bulk composition. We contend that observations of chondritic materials in the lab shed light on the nature of the bright spots on Cere
Fluid Inclusions in Astromaterials: Direct Samples of Early Solar System Aqueous Fluids
We have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. All classes of astromaterials studied show some degree of interaction with aqueous fluids. We have direct observations of cryovolcanism of several small solar system bodies (e.g. Saturnian and Jovian moons), and indirect evidence for this process on the moons Europa, Titan, Ganymede, and Miranda, and the Kuiper Belt object Charon, and so are certain of the continuing and widespread importance of aqueous processes across the solar system. Nevertheless, we are still lacking fundamental information such as the location and timing of the aqueous alteration and the detailed nature of the aqueous fluid itself
Measurements of Shock Effects Recorded by Hayabusa Samples
We requested and have been approved for 5 Hayabusa samples in order definitively establish the degree of shock experienced by the regolith of asteroid Itokawa, and to devise a bridge between shock determinations by standard light optical petrography, crystal structures as determined by synchrotron X-ray diffraction (SXRD), and degree of crystallinity as determined by electron back-scattered diffraction (EBSD) [1,2]. As of the writing of this abstract we are awaiting the approved samples. We propose measurements of astromaterial crystal structures and regolith processes. The proposed research work will improve our understanding of how small, primitive solar system bodies formed and evolved, and improve understanding of the processes that determine the history and future of habitability of environments on other solar system bodies. The results of the proposed research will directly enrich the ongoing asteroid and comet exploration missions by NASA, JAXA and ESA, and broaden our understanding of the origin and evolution of small bodies in the early solar system, and elucidate the nature of asteroid and comet regolith
Recommended from our members
The amino acid and polycyclic aromatic hydrocarbon compositions of the promptly recovered CM2 Winchcombe carbonaceous chondrite
The rapid recovery of the Winchcombe meteorite offers a valuable opportunity to study the soluble organic matter (SOM) profile in pristine carbonaceous astromaterials. Our interests in the biologically relevant molecules, amino acidsâmonomers of protein, and the most prevalent meteoritic organicsâpolycyclic aromatic hydrocarbons (PAHs) are addressed by analyzing the solvent extracts of a Winchcombe meteorite stone using gas chromatography mass spectrometry. The Winchcombe sample contains an amino acid abundance of ~1132 partsâperâbillion that is about 10 times lower than other CM2 meteorites. The detection of terrestrially rare amino acids, including αâaminoisobutyric acid (AIB); isovaline; ÎČâalanine; αâ, ÎČâ, and Îłâaminoânâbutyric acids; and 5âaminopentanoic acid, and the racemic enantiomeric ratios (D/L = 1) observed for alanine and isovaline indicate that these amino acids are indigenous to the meteorite and not terrestrial contaminants. The presence of predominantly αâAIB and isovaline is consistent with their formation via the Streckerâcyanohydrin synthetic pathway. The Lâenantiomeric excesses in isovaline previously observed for aqueously altered meteorites were viewed as an indicator of parent body aqueous processing; thus, the racemic ratio of isovaline observed for Winchcombe, alongside the overall high free:total amino acid ratio, and the low amino acid concentration suggest that the analyzed stone is derived from a lithology that has experienced brief episode(s) of aqueous alteration. Winchcombe also contains 2â to 6âring alkylated and nonalkylated PAHs. The low total PAHs abundance (6177 ppb) and high nonalkylated:alkylated ratio are distinct from that observed for heavily aqueously altered CMs. The weak petrographic properties of Winchcombe, as well as the discrepancies observed for the Winchcombe SOM contentâa low total amino acid abundance comparable to heavily altered CMs, and yet the high free:total amino acid and nonalkylated:alkylated PAH ratios are on par with the less altered CMsâsuggest that Winchcombe could represent a class of weak, poorly lithified meteorite not been previously studied
One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity
We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, ÎČ-, and Îł-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies.Yoko Kebukawa, Queenie H. S. Chan, Shogo Tachibana, Kensei Kobayashi and Michael E. Zolensk
Recommended from our members
Insoluble macromolecular organic matter in the Winchcombe meteorite
The Winchcombe meteorite fell on February 28, 2021 in Gloucestershire, United Kingdom. As the most accurately recorded carbonaceous chondrite fall, the Winchcombe meteorite represents an opportunity to link a tangible sample of known chemical constitution to a specific region of the solar system whose chemistry can only be otherwise predicted or observed remotely. Winchcombe is a CM carbonaceous chondrite, a group known for their rich and varied abiotic organic chemistry. The rapid collection of Winchcombe provides an opportunity to study a relatively terrestrial contaminantâlimited meteoritic organic assemblage. The majority of the organic matter in CM chondrites is macromolecular in nature and we have performed nondestructive and destructive analyses of Winchcombe by Raman spectroscopy, online pyrolysisâgas chromatographyâmass spectrometry (pyrolysisâGCâMS), and stepped combustion. The Winchcombe pyrolysis products were consistent with a CM chondrite, namely aromatic and polycyclic aromatic hydrocarbons, sulfurâcontaining units including thiophenes, oxygenâcontaining units such as phenols and furans, and nitrogenâcontaining units such as pyridine; many substituted/alkylated forms of these units were also present. The presence of phenols in the online pyrolysis products indicated only limited influence from aqueous alteration, which can deplete the phenol precursors in the macromolecule when aqueous alteration is extensive. Raman spectroscopy and stepped combustion also generated responses consistent with a CM chondrite. The pyrolysisâGCâMS data are likely to reflect the more labile and thermally sensitive portions of the macromolecular materials while the Raman and stepped combustion data will also reflect the more refractory and nonpyrolyzable component; hence, we accessed the complete macromolecular fraction of the recently fallen Winchcombe meteorite and revealed a chemical constitution that is similar to other meteorites of the CM group
Recommended from our members
Insoluble macromolecular organic matter in the Winchcombe meteorite
The Winchcombe meteorite fell on February 28, 2021 in Gloucestershire, United Kingdom. As the most accurately recorded carbonaceous chondrite fall, the Winchcombe meteorite represents an opportunity to link a tangible sample of known chemical constitution to a specific region of the solar system whose chemistry can only be otherwise predicted or observed remotely. Winchcombe is a CM carbonaceous chondrite, a group known for their rich and varied abiotic organic chemistry. The rapid collection of Winchcombe provides an opportunity to study a relatively terrestrial contaminantâlimited meteoritic organic assemblage. The majority of the organic matter in CM chondrites is macromolecular in nature and we have performed nondestructive and destructive analyses of Winchcombe by Raman spectroscopy, online pyrolysisâgas chromatographyâmass spectrometry (pyrolysisâGCâMS), and stepped combustion. The Winchcombe pyrolysis products were consistent with a CM chondrite, namely aromatic and polycyclic aromatic hydrocarbons, sulfurâcontaining units including thiophenes, oxygenâcontaining units such as phenols and furans, and nitrogenâcontaining units such as pyridine; many substituted/alkylated forms of these units were also present. The presence of phenols in the online pyrolysis products indicated only limited influence from aqueous alteration, which can deplete the phenol precursors in the macromolecule when aqueous alteration is extensive. Raman spectroscopy and stepped combustion also generated responses consistent with a CM chondrite. The pyrolysisâGCâMS data are likely to reflect the more labile and thermally sensitive portions of the macromolecular materials while the Raman and stepped combustion data will also reflect the more refractory and nonpyrolyzable component; hence, we accessed the complete macromolecular fraction of the recently fallen Winchcombe meteorite and revealed a chemical constitution that is similar to other meteorites of the CM group
A D- and N-15-Rich Micrometer-Sized Aggregate of Organic Matter in a Xenolithic Clast from the Zag Ordinary Chondrite
The nature and origin of extraterrestrial organic matter are still under debate despite the significant progress in the analyses and experimental approaches in this field over the last five decades. Xenolithic clasts are often found in a wide variety of meteorite groups, some of which contain exotic organic matter (OM). The Zag meteorite is a thermally-metamorphosed H ordinary chondrite. It contains a primitive xenolithic clast that has been proposed to have originated from Ceres, which was accreted to the Zag host asteroid after metamorphism. The cm-sized clast contains abundant large carbon-rich (mostly organic) grains or aggregates up to 20 microns. Such large OM grains are unique among astromaterials with respect to the size. Here we report organic and isotope analyses of a large (approx.10 microns) aggregate of solid OM in the Zag clast. The X-ray micro-spectroscopic technique revealed that the OM has sp2 bonded carbon with no other functional groups nor graphitic feature (1s-sigma exciton), and thus it is distinguished from most of the OM in carbonaceous meteorites. The apparent absence of functional groups in the OM suggests that it is composed of hydrocarbon networks with less heteroatoms, and therefore the OM aggregate is similar to hydrogenated amorphous carbon (HAC). The OM aggregate has high D/H and 15N/14N ratios, suggesting that it originated in a very cold environment such as the interstellar medium or outer region of the solar nebula, while the OM is embedded in carbonate-bearing matrix resulting from aqueous activities. Thus the high D/H ratio must have survived the extensive late-stage aqueous processing. It is not in the case for OM in carbonaceous chondrites of which the D/H ratio was reduced by the alteration via the D-H exchange of water. It indicates that both the OM precursors and the water had high D/H ratios, similar to the water in Enceladus. Our results support the idea that the clast originated from Ceres, or at least, a hydrovolcanically active body similar to Ceres, and further imply that Ceres originally formed in the outer Solar System and migrated to the main belt asteroid region as suggested by the "Grand tack" scenario
Development of nanoelectrospray high resolution isotope dilution mass spectrometry for targeted quantitative analysis of urinary metabolites: Application to population profiling and clinical studies
ABSTRACT An automated chip-based electrospray platform was used to develop a high-throughput nanoelectrospray high resolution mass spectrometry (nESI-HRMS) method for multiplexed parallel untargeted and targeted quantitative metabolic analysis of the urine samples. The method was demonstrated to be suitable for metabolic analysis of large sample numbers and can be applied to large-scale epidemiological and stratified medicine studies. The method requires a small amount of sample (5 ÎŒL of injectable volume containing 250 nL of original sample), and the analysis time for each sample is three minutes per sample to acquire data in both negative and positive ion modes. Identification of metabolites was based on the high resolution accurate mass and tandem mass spectrometry using authentic standards. The method was validated for 8 targeted metabolites and was shown to be precise and accurate. The mean accuracy of individual measurements being of 106% and the intra-and inter-day precision (expressed as relative standard deviations) were 9% and 14%, respectively. Selected metabolites were quantified by standard addition calibration using the stable isotope labelled internal standards in a pooled urine sample, to account for any matrix effect. The multiple point standard addition calibration curves yielded correlation coefficients greater than 0.99, and the linear dynamic range was more than three orders of magnitude. As a proof-of-concept the developed method was applied for targeted quantitative analysis of a set of 101 urine samples obtained from female participants with different pregnancy outcomes. In addition to the specifically targeted metabolites, several other metabolites were quantified relative to the internal standards. Based on the calculated concentrations, some metabolites showed significant differences according to different pregnancy outcomes. The acquired high resolution full-scan data were used for further untargeted fingerprinting and improved the differentiation of urine samples based on pregnancy outcome
- âŠ