54 research outputs found

    Human Metapneumovirus-associated Atypical Pneumonia and SARS

    Get PDF
    Acute pneumonia developed in a previously healthy man during the outbreak of severe acute respiratory syndrome (SARS) in southern China in March 2003. Antibiotic treatment was ineffective, and he died 8 days after illness onset. Human metapneumovirus was isolated from lung tissue. No other pathogen was found. Other etiologic agents should thus be sought in apparent SARS cases when coronavirus infection cannot be confirmed

    Association between the risk of seizure and COVID-19 vaccinations: A self-controlled case-series study

    Get PDF
    OBJECTIVE: The risk of seizure following BNT162b2 and CoronaVac vaccinations has been sparsely investigated. This study aimed to evaluate this association. METHOD: Patients who had their first seizure-related hospitalization between February 23, 2021 and January 31, 2022 were identified in Hong Kong. All seizure episodes happening on the day of vaccination (day 0) were excluded since clinicians validated that most of the cases on day 0 were syncopal episodes. Within-individual comparison using a modified self-controlled case series analysis was applied to estimate the incidence rate ratio (IRR) with 95% confidence intervals (CI) of seizure using conditional Poisson regression. RESULTS: We identified 1656 individuals who had their first seizure-related hospitalization (BNT162b2: 426; CoronaVac: 263; unvaccinated: 967) within the observation period. The incidence of seizure was 1.04 (95% CI: 0.80-1.33) and 1.11 (95% CI: 0.80-1.50) per 100,000 doses of BNT162b2 and CoronaVac administered respectively. 16 and 17 individuals received second dose after having first seizure within 28 days after first dose of BNT162b2 and CoronaVac vaccinations, respectively. None had recurrent seizures after the second dose. There was no increased risk during day 1-6 after the first (BNT162b2: IRR=1.39, 95% CI=0.75-2.58; CoronaVac: IRR=1.19, 95% CI=0.50-2.83) and second doses (BNT162b2: IRR=1.36, 95% CI 0.72-2.57; CoronaVac: IRR=0.71, 95% CI=0.22-2.30) of vaccinations. During 7-13, 14-20- and 21-27-days post-vaccination, no association was observed for both vaccines. SIGNIFICANCE: The findings demonstrated no increased risk of seizure following BNT162b2 and CoronaVac vaccinations. Future studies will be warranted to evaluate the risk of seizure following COVID-19 vaccinations in different populations with subsequent doses to ensure the generalizability

    Mitotic Errors Promote Genomic Instability and Leukemia in a Novel Mouse Model of Fanconi Anemia

    Get PDF
    © 2021 Edwards, Mitchell, Abdul-Sater, Chan, Sun, Sheth, He, Jiang, Yuan, Sharma, Czader, Chin, Liu, de Cárcer, Nalepa, Broxmeyer, Clapp and Sierra Potchanant.Fanconi anemia (FA) is a disease of genomic instability and cancer. In addition to DNA damage repair, FA pathway proteins are now known to be critical for maintaining faithful chromosome segregation during mitosis. While impaired DNA damage repair has been studied extensively in FA-associated carcinogenesis in vivo, the oncogenic contribution of mitotic abnormalities secondary to FA pathway deficiency remains incompletely understood. To examine the role of mitotic dysregulation in FA pathway deficient malignancies, we genetically exacerbated the baseline mitotic defect in Fancc-/- mice by introducing heterozygosity of the key spindle assembly checkpoint regulator Mad2. Fancc-/-;Mad2+/- mice were viable, but died from acute myeloid leukemia (AML), thus recapitulating the high risk of myeloid malignancies in FA patients better than Fancc-/-mice. We utilized hematopoietic stem cell transplantation to propagate Fancc-/-; Mad2+/- AML in irradiated healthy mice to model FANCC-deficient AMLs arising in the non-FA population. Compared to cells from Fancc-/- mice, those from Fancc-/-;Mad2+/- mice demonstrated an increase in mitotic errors but equivalent DNA cross-linker hypersensitivity, indicating that the cancer phenotype of Fancc-/-;Mad2+/- mice results from error-prone cell division and not exacerbation of the DNA damage repair defect. We found that FANCC enhances targeting of endogenous MAD2 to prometaphase kinetochores, suggesting a mechanism for how FANCC-dependent regulation of the spindle assembly checkpoint prevents chromosome mis-segregation. Whole-exome sequencing revealed similarities between human FA-associated myelodysplastic syndrome (MDS)/AML and the AML that developed in Fancc-/-; Mad2+/- mice. Together, these data illuminate the role of mitotic dysregulation in FA-pathway deficient malignancies in vivo, show how FANCC adjusts the spindle assembly checkpoint rheostat by regulating MAD2 kinetochore targeting in cell cycle-dependent manner, and establish two new mouse models for preclinical studies of AML.This work was supported by the NIH R01-HL132921-01A1 award (DWC), St. Baldrick’s Foundation Scholar award (GN), Heroes Foundation (GN), the Bone Marrow Failure Research Fund at Riley Children’s Foundation (GN), NIH T32 HL007910 “Basic Science Studies on Gene Therapy of Blood Diseases” grant (ES), NIH Diversity Supplement 3R01HL132921-03S1 (ES), and NCI 1F30CA200227-01A1 fellowship (DE)

    Transcriptional Activation of TINF2, a Gene Encoding the Telomere-Associated Protein TIN2, by Sp1 and NF-κB Factors

    Get PDF
    The expression of the telomere-associated protein TIN2 has been shown to be essential for early embryonic development in mice and for development of a variety of human malignancies. Recently, germ-line mutations in TINF2, which encodes for the TIN2 protein, have been identified in a number of patients with bone-marrow failure syndromes. Yet, the molecular mechanisms that regulate TINF2 expression are largely unknown. To elucidate the mechanisms involved in human TINF2 regulation, we cloned a 2.7 kb genomic DNA fragment containing the putative promoter region and, through deletion analysis, identified a 406 bp region that functions as a minimal promoter. This promoter proximal region is predicted to contain several putative Sp1 and NF-κB binding sites based on bioinformatic analysis. Direct binding of the Sp1 and NF-κB transcription factors to the TIN2 promoter sequence was demonstrated by electrophoretic mobility shift assay (EMSA) and/or chromatin immunoprecipitation (ChIP) assays. Transfection of a plasmid carrying the Sp1 transcription factor into Sp-deficient SL2 cells strongly activated TIN2 promoter-driven luciferase reporter expression. Similarly, the NF-κB molecules p50 and p65 were found to strongly activate luciferase expression in NF-κB knockout MEFs. Mutating the predicted transcription factor binding sites effectively reduced TIN2 promoter activity. Various known chemical inhibitors of Sp1 and NF-κB could also strongly inhibit TIN2 transcriptional activity. Collectively, our results demonstrate the important roles that Sp1 and NF-κB play in regulating the expression of the human telomere-binding protein TIN2, which can shed important light on its possible role in causing various forms of human diseases and cancers

    Molecular mechanisms of IL-2 mediated BCL10 nuclear localization and the therapeutic role of an anti-CD25 antibody in nasal NK-celllymphoma

    No full text
    published_or_final_versionPathologyDoctoralDoctor of Philosoph
    corecore