7,133 research outputs found

    Digital Signal Processing

    Get PDF
    Contains reports on one research project.National Science Foundation (Grant ENG71-02319-AO2

    How do electronic carriers cross Si-bound alkyl monolayers?

    Full text link
    Electron transport through Si-C bound alkyl chains, sandwiched between n-Si and Hg, is characterized by two distinct types of barriers, each dominating in a different voltage range. At low voltage, current depends strongly on temperature but not on molecular length, suggesting transport by thermionic emission over a barrier in the Si. At higher voltage, the current decreases exponentially with molecular length, suggesting tunneling through the molecules. The tunnel barrier is estimated, from transport and photoemission data, to be ~1.5 eV with a 0.25me effective mass.Comment: 13 pages, 3 figure

    Machine learning for classifying and interpreting coherent X-ray speckle patterns

    Full text link
    Speckle patterns produced by coherent X-ray have a close relationship with the internal structure of materials but quantitative inversion of the relationship to determine structure from speckle patterns is challenging. Here, we investigate the link between coherent X-ray speckle patterns and sample structures using a model 2D disk system and explore the ability of machine learning to learn aspects of the relationship. Specifically, we train a deep neural network to classify the coherent X-ray speckle patterns according to the disk number density in the corresponding structure. It is demonstrated that the classification system is accurate for both non-disperse and disperse size distributions

    Dengue serotyping with a label-free DNA sensor

    Get PDF
    Dengue virus (DENV) is one of the most important mosquito-borne viruses in tropical and subtropical regions. Development of severe forms of dengue viral infection such as dengue fever (DF) and dengue hemorrhagic fever (DHF) has claimed many lives. The standard methods for detecting dengue virus are time consuming, laborious, and require skilful personnel. In this study, we propose a method whereby DENV RNA extracted from dengue infected mosquitoes was converted into DNA for probe hybridization to generate silver nanocluster strands that could be visualised under UV light. Label-free silver nanocluster based DNA sensors are able to provide strong fluorescence upon DNA hybridization. Highly specific DNA sequence detection is possible by taking advantage of the specificity of DNA hybridization kinetics. The proposed system is capable of detecting all four dengue DNA serotypes (DENV1-4) without any cross-reactivity. A single tube assay format showed better hybridisation efficiency with higher fluorescence intensity generated and a lower detection limit compared to a cocktail probe assay format. The method was able to detect as low as 100 nM of amplified double stranded dengue DNA targets using both single and cocktail probe assays. This provides an interesting alternative approach for multiplex DNA sensing utilizing DNA silver nanoclusters as a reporter system. © 2018 The Royal Society of Chemistry

    Digital Signal Processing

    Get PDF
    Contains research objectives and summary of research on seven research projects.Joint Services Electronics Program (Contract DAAB07-76-C-1400)U. S. Navy - Office of Naval Research (Contract N00014-75-C-0951-NR 049-308)National Science Foundation (Grant ENG71-02319-AO2

    Evolution in random fitness landscapes: the infinite sites model

    Full text link
    We consider the evolution of an asexually reproducing population in an uncorrelated random fitness landscape in the limit of infinite genome size, which implies that each mutation generates a new fitness value drawn from a probability distribution g(w)g(w). This is the finite population version of Kingman's house of cards model [J.F.C. Kingman, \textit{J. Appl. Probab.} \textbf{15}, 1 (1978)]. In contrast to Kingman's work, the focus here is on unbounded distributions g(w)g(w) which lead to an indefinite growth of the population fitness. The model is solved analytically in the limit of infinite population size N→∞N \to \infty and simulated numerically for finite NN. When the genome-wide mutation probability UU is small, the long time behavior of the model reduces to a point process of fixation events, which is referred to as a \textit{diluted record process} (DRP). The DRP is similar to the standard record process except that a new record candidate (a number that exceeds all previous entries in the sequence) is accepted only with a certain probability that depends on the values of the current record and the candidate. We develop a systematic analytic approximation scheme for the DRP. At finite UU the fitness frequency distribution of the population decomposes into a stationary part due to mutations and a traveling wave component due to selection, which is shown to imply a reduction of the mean fitness by a factor of 1−U1-U compared to the U→0U \to 0 limit.Comment: Dedicated to Thomas Nattermann on the occasion of his 60th birthday. Submitted to JSTAT. Error in Section 3.2 was correcte

    Scale-invariant magnetic anisotropy in RuCl3_3 at high magnetic fields

    Full text link
    In RuCl3_3, inelastic neutron scattering and Raman spectroscopy reveal a continuum of non-spin-wave excitations that persists to high temperature, suggesting the presence of a spin liquid state on a honeycomb lattice. In the context of the Kitaev model, magnetic fields introduce finite interactions between the elementary excitations, and thus the effects of high magnetic fields - comparable to the spin exchange energy scale - must be explored. Here we report measurements of the magnetotropic coefficient - the second derivative of the free energy with respect to magnetic field orientation - over a wide range of magnetic fields and temperatures. We find that magnetic field and temperature compete to determine the magnetic response in a way that is independent of the large intrinsic exchange interaction energy. This emergent scale-invariant magnetic anisotropy provides evidence for a high degree of exchange frustration that favors the formation of a spin liquid state in RuCl3_3.Comment: arXiv admin note: substantial text overlap with arXiv:1901.09245. Nature Physic

    Cytokine Response Patterns in Severe Pandemic 2009 H1N1 and Seasonal Influenza among Hospitalized Adults

    Get PDF
    BACKGROUND: Studying cytokine/chemokine responses in severe influenza infections caused by different virus subtypes may improve understanding on pathogenesis. METHODS: Adults hospitalized for laboratory-confirmed seasonal and pandemic 2009 A/H1N1 (pH1N1) influenza were studied. Plasma concentrations of 13 cytokines/chemokines were measured at presentation and then serially, using cytometric-bead-array with flow-cytometry and ELISA. PBMCs from influenza patients were studied for cytokine/chemokine expression using ex-vivo culture (Whole Blood Assay,±PHA/LPS stimulation). Clinical variables were prospectively recorded and analyzed. RESULTS: 63 pH1N1 and 53 seasonal influenza patients were studied. pH1N1 patients were younger (mean±S.D. 42.8±19.2 vs 70.5±16.7 years), and fewer had comorbidities. Respiratory/cardiovascular complications were common in both groups (71.4% vs 81.1%), although severe pneumonia with hypoxemia (54.0% vs 28.3%) and ICU admissions (25.4% vs 1.9%) were more frequent with pH1N1. Hyperactivation of the proinflammatory cytokines IL-6, CXCL8/IL-8, CCL2/MCP-1 and sTNFR-1 was found in pH1N1 pneumonia (2-15 times normal) and in complicated seasonal influenza, but not in milder pH1N1 infections. The adaptive-immunity (Th1/Th17)-related CXCL10/IP-10, CXCL9/MIG and IL-17A however, were markedly suppressed in severe pH1N1 pneumonia (2-27 times lower than seasonal influenza; P-values<0.01). This pattern was further confirmed with serial measurements. Hypercytokinemia tended to be sustained in pH1N1 pneumonia, associated with a slower viral clearance [PCR-negativity: day 3-4, 55% vs 85%; day 6-7, 67% vs 100%]. Elevated proinflammatory cytokines, particularly IL-6, predicted ICU admission (adjusted OR 12.6, 95%CI 2.6-61.5, per log(10)unit increase; P = 0.002), and correlated with fever, tachypnoea, deoxygenation, and length-of-stay (Spearman's rho, P-values<0.01) in influenza infections. PBMCs in seasonal influenza patients were activated and expressed cytokines ex vivo (e.g. IL-6, CXCL8/IL-8, CCL2/MCP-1, CXCL10/IP-10, CXCL9/MIG); their 'responsiveness' to stimuli was shown to change dynamically during the illness course. CONCLUSIONS: A hyperactivated proinflammatory, but suppressed adaptive-immunity (Th1/Th17)-related cytokine response pattern was found in severe pH1N1 pneumonia, different from seasonal influenza. Cytokine/immune-dysregulation may be important in its pathogenesis

    Measurement of Pulmonary Flow Reserve and Pulmonary Index of Microcirculatory Resistance for Detection of Pulmonary Microvascular Obstruction

    Get PDF
    BACKGROUND: The pulmonary microcirculation is the chief regulatory site for resistance in the pulmonary circuit. Despite pulmonary microvascular dysfunction being implicated in the pathogenesis of several pulmonary vascular conditions, there are currently no techniques for the specific assessment of pulmonary microvascular integrity in humans. Peak hyperemic flow assessment using thermodilution-derived mean transit-time (T(mn)) facilitate accurate coronary microcirculatory evaluation, but remain unvalidated in the lung circulation. Using a high primate model, we aimed to explore the use of T(mn) as a surrogate of pulmonary blood flow for the purpose of measuring the novel indices Pulmonary Flow Reserve [PFR = (maximum hyperemic)/(basal flow)] and Pulmonary Index of Microcirculatory Resistance [PIMR = (maximum hyperemic distal pulmonary artery pressure)x(maximum hyperemic T(mn))]. Ultimately, we aimed to investigate the effect of progressive pulmonary microvascular obstruction on PFR and PIMR. METHODS AND RESULTS: Temperature- and pressure-sensor guidewires (TPSG) were placed in segmental pulmonary arteries (SPA) of 13 baboons and intravascular temperature measured. T(mn) and hemodynamics were recorded at rest and following intra-SPA administration of the vasodilator agents adenosine (10-400 microg/kg/min) and papaverine (3-24 mg). Temperature did not vary with intra-SPA sensor position (0.010+/-0.009 v 0.010+/-0.009 degrees C; distal v proximal; p = 0.1), supporting T(mn) use in lung for the purpose of hemodynamic indices derivation. Adenosine (to 200 microg/kg/min) & papaverine (to 24 mg) induced dose-dependent flow augmentations (40+/-7% & 35+/-13% T(mn) reductions v baseline, respectively; p<0.0001). PFR and PIMR were then calculated before and after progressive administration of ceramic microspheres into the SPA. Cumulative microsphere doses progressively reduced PFR (1.41+/-0.06, 1.26+/-0.19, 1.17+/-0.07 & 1.01+/-0.03; for 0, 10(4), 10(5) & 10(6) microspheres; p = 0.009) and increased PIMR (5.7+/-0.6, 6.3+/-1.0, 6.8+/-0.6 & 7.6+/-0.6 mmHg.sec; p = 0.0048). CONCLUSIONS: Thermodilution-derived mean transit time can be accurately and reproducibly measured in the pulmonary circulation using TPSG. Mean transit time-derived PFR and PIMR can be assessed using a TPSG and adenosine or papaverine as hyperemic agents. These novel indices detect progressive pulmonary microvascular obstruction and thus have with a potential role for pulmonary microcirculatory assessment in humans
    • …
    corecore