48,388 research outputs found
Wireless Biosensing Network for Drivers' Health Monitoring
Biosensors integrated into the vehicle controller area network are used for detecting symptoms such as anxiety, pain, and fatigue that may affect driving safety. The proposed system provides a flexible option for implementation in a diverse range of mass-produced automotive accessories without affecting the driver's movement
Archetypal analysis of galaxy spectra
Archetypal analysis represents each individual member of a set of data
vectors as a mixture (a constrained linear combination) of the pure types or
archetypes of the data set. The archetypes are themselves required to be
mixtures of the data vectors. Archetypal analysis may be particularly useful in
analysing data sets comprising galaxy spectra, since each spectrum is,
presumably, a superposition of the emission from the various stellar
populations, nebular emissions and nuclear activity making up that galaxy, and
each of these emission sources corresponds to a potential archetype of the
entire data set. We demonstrate archetypal analysis using sets of composite
synthetic galaxy spectra, showing that the method promises to be an effective
and efficient way to classify spectra. We show that archetypal analysis is
robust in the presence of various types of noise.Comment: 6 pages, 5 figures, 1 style-file. Accepted for publication by MNRA
Activation barrier scaling and crossover for noise-induced switching in a micromechanical parametric oscillator
We explore fluctuation-induced switching in a parametrically-driven
micromechanical torsional oscillator. The oscillator possesses one, two or
three stable attractors depending on the modulation frequency. Noise induces
transitions between the coexisting attractors. Near the bifurcation points, the
activation barriers are found to have a power law dependence on frequency
detuning with critical exponents that are in agreement with predicted universal
scaling relationships. At large detuning, we observe a crossover to a different
power law dependence with an exponent that is device specific.Comment: 5 pages, 5 figure
High Accuracy Fuel Flowmeter, Phase 1
Technology related to aircraft fuel mass - flowmeters was reviewed to determine what flowmeter types could provide 0.25%-of-point accuracy over a 50 to one range in flowrates. Three types were selected and were further analyzed to determine what problem areas prevented them from meeting the high accuracy requirement, and what the further development needs were for each. A dual-turbine volumetric flowmeter with densi-viscometer and microprocessor compensation was selected for its relative simplicity and fast response time. An angular momentum type with a motor-driven, spring-restrained turbine and viscosity shroud was selected for its direct mass-flow output. This concept also employed a turbine for fast response and a microcomputer for accurate viscosity compensation. The third concept employed a vortex precession volumetric flowmeter and was selected for its unobtrusive design. Like the turbine flowmeter, it uses a densi-viscometer and microprocessor for density correction and accurate viscosity compensation
The Dynamics of Charges Induced by a Charged Particle Traversing a Dielectric Slab
We studied the dynamics of surfacea and wake charges induced by a charged
particle traversing a dielectric slab. It is shown that after the crossing of
the slab first boundary, the induced on the slab surface charge (image charge)
is transformed into the wake charge, which overflows to the second boundary
when the particle crosses it. It is also shown, that the polarization of the
slab is of an oscillatory nature, and the net induced charge in a slab remains
zero at all stages of the motion.Comment: 12 pages, 1 figur
3-Body Dynamics in a (1+1) Dimensional Relativistic Self-Gravitating System
The results of our study of the motion of a three particle, self-gravitating
system in general relativistic lineal gravity is presented for an arbitrary
ratio of the particle masses. We derive a canonical expression for the
Hamiltonian of the system and discuss the numerical solution of the resulting
equations of motion. This solution is compared to the corresponding
non-relativistic and post-Newtonian approximation solutions so that the
dynamics of the fully relativistic system can be interpretted as a correction
to the one-dimensional Newtonian self-gravitating system. We find that the
structure of the phase space of each of these systems yields a large variety of
interesting dynamics that can be divided into three distinct regions: annulus,
pretzel, and chaotic; the first two being regions of quasi-periodicity while
the latter is a region of chaos. By changing the relative masses of the three
particles we find that the relative sizes of these three phase space regions
changes and that this deformation can be interpreted physically in terms of the
gravitational interactions of the particles. Furthermore, we find that many of
the interesting characteristics found in the case where all of the particles
share the same mass also appears in our more general study. We find that there
are additional regions of chaos in the unequal mass system which are not
present in the equal mass case. We compare these results to those found in
similar systems.Comment: latex, 26 pages, 17 figures, high quality figures available upon
request; typos and grammar correcte
Fluctuation-enhanced frequency mixing in a nonlinear micromechanical oscillator
We study noise-enhanced frequency mixing in an underdamped micromechanical
torsional oscillator. The oscillator is electrostatically driven into
bistability by a strong, periodic voltage at frequency . A second,
weak ac voltage is applied at a frequency close to . Due to
nonlinearity in the system, vibrations occur at both and
. White noise is injected into the excitation, allowing the
system to occasionally overcome the activation barrier and switch between the
two states. At the primary drive frequency where the occupations of the two
states are approximately equal, we observe noise-induced enhancement of the
oscillation amplitudes at both and the down-converted frequency
, in agreement with theoretical predictions. Such enhancement
occurs as a result of the noise-induced interstate transitions becoming
synchronous with the beating between the two driving frequencies.Comment: 4 pages 5 figure
Mass Hierarchy, Mixing, CP-Violation and Higgs Decay---or Why Rotation is Good for Us
The idea of a rank-one rotating mass matrix (R2M2) is reviewed detailing how
it leads to ready explanations both for the fermion mass hierarchy and for the
distinctive mixing patterns between up and down fermion states, which can be
and have been tested against experiment and shown to be fully consistent with
existing data. Further, R2M2 is seen to offer, as by-products: (i) a new
solution of the strong CP problem in QCD by linking the theta-angle there to
the Kobayashi-Maskawa CP-violating phase in the CKM matrix, and (ii) some novel
predictions of possible anomalies in Higgs decay observable in principle at the
LHC. A special effort is made to answer some questions raised.Comment: 47 pages, 9 figure
Critical dynamics of nonconserved -vector model with anisotropic nonequilibrium perturbations
We study dynamic field theories for nonconserving -vector models that are
subject to spatial-anisotropic bias perturbations. We first investigate the
conditions under which these field theories can have a single length scale.
When N=2 or , it turns out that there are no such field theories, and,
hence, the corresponding models are pushed by the bias into the Ising class. We
further construct nontrivial field theories for N=3 case with certain bias
perturbations and analyze the renormalization-group flow equations. We find
that the three-component systems can exhibit rich critical behavior belonging
to two different universality classes.Comment: Included RG analysis and discussion on new universality classe
- …