33 research outputs found

    Lineage tracing and resulting phenotype of haemopoietic-derived cells in the pancreas during beta cell regeneration

    Get PDF
    Aims Transplantation of bone marrow-derived haemopoietic stem cells following streptozotocin (STZ) treatment to induce pancreatic beta cell loss in mice causes the partial regeneration of beta cell mass, with many haemopoietic cells demonstrating endothelial cell markers. This study used genetically tagged haemopoietic lineage-derived cells to determine how endogenous cells are mobilised following beta cell loss and subsequent replacement. Methods A double transgenic mouse model, Vav-iCre; R26R-enhanced yellow fluorescent protein (YFP), was used where only haemopoietic lineage cells expressed the Vavl gene promoter allowing expression of the YFP reporter gene. Between postnatal days 2 and 4 mice were injected with STZ or vehicle (control) and body weight and glycaemia were monitored. Mice were killed between days 10 and 130, and the pancreases were examined by immunofluorescence microscopy. Results YFP-expressing cells infiltrated the pancreas at all ages, being present around newly forming islets at the pancreatic ducts, and within larger islets. Small numbers of YFP-positive cells (\u3c5%) co-stained for the macrophage markers F4/80 or Mac1, for cytokeratin 19, or for the transcription factor pancreatic and duodenal homeobox 1 (PDX-1), but no co-localisation was seen with insulin or other endocrine hormones. Within islets approximately 30% of YFP-positive cells co-stained for the endothelial cell marker CD31, and following STZ the number of haemopoietic-derived cells, and the proportion that were CD31-positive, both significantly increased after 21 and 40 days, coincident with a partial replacement of beta cells. Conclusions Our results suggest that following beta cell loss endogenous haemopoietic-lineage cells contribute to intra-islet angiogenesis, which supports a partial recovery of beta cell mass. © Springer-Verlag 2010

    Susceptibility to fatty acid-induced β-cell dysfunction is enhanced in prediabetic diabetes-prone biobreeding rats: A potential link between β-cell lipotoxicity and islet inflammation

    Get PDF
    β-Cell lipotoxicity is thought to play an important role in the development of type 2 diabetes. However, no study has examined its role in type 1 diabetes, which could be clinically relevant for slow-onset type 1 diabetes. Reports of enhanced cytokine toxicity in fat-laden islets are consistent with the hypothesis that lipid and cytokine toxicity maybe synergistic. Thus, β-cell lipotoxicity could be enhanced in models of autoimmune diabetes. To determine this, we examined the effects of prolonged free fatty acids elevation on β-cell secretory function in the prediabetic diabetes-prone BioBreeding (dp-BB) rat, its diabetes-resistant BioBreeding (dr-BB) control, and normal Wistar-Furth (WF) rats. Rats received a 48-h iv infusion of saline or Intralipid plus heparin (IH) (to elevate free fatty acid levels ∼2-fold) followed by hyperglycemic clamp or islet secretion studies ex vivo. IH significantly decreased β-cell function, assessed both by the disposition index (insulin secretion corrected for IH-induced insulin resistance) and in isolated islets, in dp-BB, but not in dr-BB or WF, rats, and the effect of IH was inhibited by the antioxidant N-acetylcysteine. Furthermore, IH significantly increased islet cytokine mRNA and plasma cytokine levels (monocyte chemoattractant protein-1 and IL-10) in dp-BB, but not in dr-BB or WF, rats. All dp-BB rats had mononuclear infiltration of islets, which was absent in dr-BB and WF rats. In conclusion, the presence of insulitis was permissive for IH-induced β-cell dysfunction in the BB rat, which suggests a link between β-cell lipotoxicity and islet inflammation. Copyright © 2013 by The Endocrine Society

    Effects of Protein Deficiency on Perinatal and Postnatal Health Outcomes

    Get PDF
    There are a variety of environmental insults that can occur during pregnancy which cause low birth weight and poor fetal health outcomes. One such insult is maternal malnutrition, which can be further narrowed down to a low protein diet during gestation. Studies show that perinatal protein deficiencies can impair proper organ growth and development, leading to long-term metabolic dysfunction. Understanding the molecular mechanisms that underlie how this deficiency leads to adverse developmental outcomes is essential for establishing better therapeuticstrategies that may alleviate or prevent diseases in later life. This chapter reviews how perinatal protein restriction in humans and animals leads to metabolic disease, and it identifies the mechanisms that have been elucidated, to date. These include alterations in transcriptional and epigenetic mechanisms, as well as indirect means such as endoplasmic reticulum (ER) stress and oxidative stress. Furthermore, nutritional and pharmaceutical interventions are highlighted to illustrate that the plasticity of the underdeveloped organs during perinatal life can be exploited to prevent onset of long-term metabolic disease

    Maternal Undernutrition and Long-term Effects on Hepatic Function

    Get PDF
    Undernutrition in utero, regardless of the source, can impair proper liver development leading to long-term metabolic dysfunction. Understanding the molecular mechanisms underlying how nutritional deficits during perinatal life lead to permanent alterations in hepatic gene expression will provide better therapeutic strategies to alleviate the undernourished liver in postnatal life. This chapter addresses the different experimental models of undernutrition in utero, and highlights the direct and indirect mechanisms involved leading to metabolic diseases in the liver. These include hypoxia, oxidative stress, epigenetic alterations, and endoplasmic reticulum (ER) stress. In addition, promising perinatal nutritional and pharmaceutical interventions are highlighted which illustrate how the placidity of the developing liver can be exploited to prevent the onset of long-term metabolic disease

    Spatiotemporally-induced over expression of NKx2.2 in pancreatic tissue

    No full text
    104 p. : ill. ; 22 cm. 2nd printing.https://digitalcommons.pittstate.edu/ertman/1093/thumbnail.jp

    Method for imaging quantum dots during exposure to gamma radiation

    No full text
    Quantum dots have been used in a wide variety of biomedical applications. A key advantage of these particles is that their optical properties depend predictably on size, which enables tuning of the emission wavelength. Recently, it was found that CdSe/ZnS quantum dots lose their ability to photoluminescence after exposure to gamma radiation (J. Phys. Chem. C., 113: 2580-2585 (2009). A method for readout of the loss of quantum dot photoluminescence during exposure to radiation could enable a multitude of real-time dosimetry applications. Here, we report on a method to image photoluminescence from quantum dots from a distance and under ambient lighting conditions. The approach was to construct and test a time-gated imaging system that incorporated pulsed illumination. The system was constructed from a pulsed green laser (Nd:YAG, 20 pulses/s, 5 ns pulse duration, 3c5 mJ/pulse), a time-gated camera (LaVision Picostar, 2 ns gate width), and optical components to enable coaxial illumination and imaging. Using the system to image samples of equivalent concentration to the previous end-point work, quantum dot photoluminescence was measureable under ambient room lighting at a distance of 25 cm from the sample with a signal to background of 7.5:1. Continuous exposure of samples to pulsed laser produced no measureable loss of photoluminescence over a time period of one hour. With improvements to the light collection optics the range of the system is expected to increase to several metres, which will enable imaging of samples during exposure to a gamma radiation source. \ua9 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).Peer reviewed: YesNRC publication: Ye

    Postnatal development of the endocrine pancreas in mice lacking functional GABAB receptors

    No full text
    Adult mice lacking functional GABAB receptors (GABAB1KO) have glucose metabolism alterations. Since GABAB receptors (GABABRs) are expressed in progenitor cells, we evaluated islet development in GABAB1KO mice. Postnatal day 4 (PND4) and adult, male and female, GABAB1KO, and wild-type littermates (WT) were weighed and euthanized, and serum insulin and glucagon was measured. Pancreatic glucagon and insulin content were assessed, and pancreas insulin, glucagon, PCNA, and GAD65/67 were determined by immunohistochemistry. RNA from PND4 pancreata and adult isolated islets was obtained, and Ins1, Ins2, Gcg, Sst, Ppy, Nes, Pdx1, and Gad1 transcription levels were determined by quantitative PCR. The main results were as follows: 1) insulin content was increased in PND4 GABAB1KO females and in both sexes in adult GABAB1KOs; 2) GABAB1KO females had more clusters (>500 mum(2)) and less islets than WT females; 3) cluster proliferation was decreased at PND4 and increased in adult GABAB1KO mice; 4) increased beta-area at the expense of the alpha-cell area was present in GABAB1KO islets; 5) Ins2, Sst, and Ppy transcription were decreased in PND4 GABAB1KO pancreata, adult GABAB1KO female islets showed increased Ins1, Ins2, and Sst expression, Pdx1 was increased in male and female GABAB1KO islets; and 6) GAD65/67 was increased in adult GABAB1KO pancreata. We demonstrate that several islet parameters are altered in GABAB1KO mice, further pinpointing the importance of GABABRs in islet physiology. Some changes persist from neonatal ages to adulthood (e.g., insulin content in GABAB1KO females), whereas other features are differentially regulated according to age (e.g., Ins2 was reduced in PND4, whereas it was upregulated in adult GABAB1KO females)

    Mechanism of action of GABA B receptor in anterior pituitary cells: Mechanism of action coupled to endocrine effects

    No full text
    The activation of pituitary GABA(B) receptors by the specific agonist baclofen inhibits pituitary hormone secretion in vitro. Here we studied the mechanism of action of GABA(B) receptors in rat adenohypophysis. Anterior pituitary cells were obtained by trypsinization and were either plated for hormonal studies and cAMP determination or incubated in FURA 2AM for calcium measurements. Baclofen (BACL: 1 x 10(-5) M) significantly inhibited basal and thyrotropic releasing hormone (TRH)-stimulated (1 x 10(-7) M) PRL secretion in anterior pituitary cells from proestrous rats. In the presence of pertussis toxin (PTX: 150 ng/ml, 20 h), which leads to the uncoupling of the G(i/o)-protein from the receptor, both effects of BACL were abolished while the effect of dopamine (DA: 1 x 10(-8) M), used as an inhibitory control, was reduced from 70 to 25%. PTX also reversed BACL-induced inhibition of gonadotropin-releasing hormone (GnRH)-elicited luteinizing hormone (LH) secretion in anterior pituitary cells from 15-day-old female rats. In addition, though working in a pituitary mixed cell population, in which only some cell types possess GABA(B) receptors, BACL (1 x 10(-5) M) attenuated the forskolin-induced (0.5 microM) increase in cAMP. This effect was prevented by co-incubation with the antagonist 2 hydroxysaclofen and by preincubation with PTX. BACL (5 x 10(-5) M) and DA (5 x 10(-7) M) inhibited basal intracellular calcium concentrations ([Ca(2+)](i)) in pituitary cells and the effect of the latter was significantly stronger. The effect of BACL on [Ca(2+)](i) was abolished after preincubation with PTX. In the presence of the potassium channel blocking agents barium (200 microM and 1 mM) and tetraethylammonium (10 mM), BACL was still able to inhibit [Ca(2+)](i). Blockade of voltage-sensitive calcium channels (VSCC) with either verapamil (5 x 10(-6) M) or nifedipine (1 x 10(-6) M) completely abolished the effect of BACL on [Ca(2+)](i). In the presence of 12.5 mM potassium concentration baclofen significantly inhibited [Ca(2+)](i). In conclusion, our results describe the negative coupling of adenohypophyseal GABA(B) receptors to VSCC through PTX-sensitive G-proteins. These characteristics suggest a resemblance of these receptors to the typical presynaptic GABA(B) sites described in the central nervous system.Fil: Lux, Victoria Adela R.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Becu, Damasia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Bianchi, Maria Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Rey Roldan, E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Chamson Reig, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Pignataro, Omar Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Libertun, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentin
    corecore