163 research outputs found
Immune metabolism in PD-1 blockade-based cancer immunotherapy
Energy metabolism plays an important role in proliferating cells. Recent reports indicate that metabolic regulation or metabolic products can control immune cell differentiation, fate and reactions. Cancer immunotherapy based on blockade of programmed cell death protein 1 (PD-1) has been used worldwide, but a significant fraction of patients remain unresponsive. Therefore, clarifying the mechanisms and overcoming the unresponsiveness are urgent issues. Because cancer immunity consists of interactions between the cancer and host immune cells, there has recently been a focus on the metabolic interactions and/or competition between the tumor and the immune system to address these issues. Cancer cells render their microenvironment immunosuppressive, driving T-cell dysfunction or exhaustion, which is advantageous for cancer cell survival. However, accumulating mechanistic evidence of T-cell and cancer cell metabolism has gradually revealed that controlling the metabolic pathways of either type of cell can overcome T-cell dysfunction and reprogram the metabolic balance in the tumor microenvironment. Here, we summarize the role of immune metabolism in T-cell-based immune surveillance and cancer immune escape. This new concept has boosted the development of combination therapy and predictive biomarkers in cancer immunotherapy with immune checkpoint inhibitors
Current issues and perspectives in PD-1 blockade cancer immunotherapy
Programmed cell death 1 (PD-1) signal receptor blockade has revolutionized the field of cancer therapy. Despite their considerable potential for treating certain cancers, drugs targeting PD-1 still present two main drawbacks: the substantial number of unresponsive patients and/or patients showing recurrences, and side effects associated with the autoimmune response. These drawbacks highlight the need for further investigation of the mechanisms underlying the therapeutic effects, as well as the need to develop novel biomarkers to predict the lack of treatment response and to monitor potential adverse events. Combination therapy is a promising approach to improve the efficacy of PD-1 blockade therapy. Considering the increasing number of patients with cancer worldwide, solving the above issues is central to the field of cancer immunotherapy. In this review, we discuss these issues and clinical perspectives associated with PD-1 blockade cancer immunotherapy
Recommended from our members
Detection of Murine Post-Pneumonectomy Lung Regeneration by 18FDG PET Imaging
Background: An intriguing biologic process in most adult mammals is post-pneumonectomy lung regeneration, that is, the removal of one lung (pneumonectomy) results in the rapid compensatory growth of the remaining lung. The spatial dependence and metabolic activity of the rodent lung during compensatory lung regeneration is largely unknown. Methods: To determine if murine lung regeneration could be detected in vivo, we studied inbred mice 3, 7, 14, and 21 days after left pneumonectomy. The remaining lung was imaged using microCT as well as the glucose tracer 2-deoxy-2-[18 F]fluoro-d-glucose (18FDG) and positron-emission tomography (PET). Because of the compliance of the murine chest wall, reproducible imaging required orotracheal intubation and pressure-controlled ventilation during scanning. Results: After left pneumonectomy, the right lung progressively enlarged over the first 3 weeks. The cardiac lobe demonstrated the greatest percentage increase in size. Dry weights of the individual lobes largely mirrored the increase in lung volume. PET/CT imaging was used to identify enhanced metabolic activity within the individual lobes. In the cardiac lobe, 18FDG uptake was significantly increased in the day 14 cardiac lobe relative to preoperative values (p < .05). In contrast, the 18FDG uptake in the other three lobes was not statistically significant at any time point. Conclusions: We conclude that the cardiac lobe is the dominant contributor to compensatory growth after murine pneumonectomy. Further, PET/CT scanning can detect both the volumetric increase and the metabolic changes associated with the regenerative growth in the murine cardiac lobe
IL-6–dependent spontaneous proliferation is required for the induction of colitogenic IL-17–producing CD8+ T cells
We propose a novel role for interleukin (IL) 6 in inducing rapid spontaneous proliferation (SP) of naive CD8+ T cells, which is a crucial step in the differentiation of colitogenic CD8+ T cells. Homeostasis of T cells is regulated by two distinct modes of cell proliferation: major histocompatibility complex/antigen–driven rapid SP and IL-7/IL-15–dependent slow homeostatic proliferation. Using our novel model of CD8+ T cell–dependent colitis, we found that SP of naive CD8+ T cells is essential for inducing pathogenic cytokine-producing effector T cells. The rapid SP was predominantly induced in mesenteric lymph nodes (LNs) but not in peripheral LNs under the influence of intestinal flora and IL-6. Indeed, this SP was markedly inhibited by treatment with anti–IL-6 receptor monoclonal antibody (IL-6R mAb) or antibiotic-induced flora depletion, but not by anti–IL-7R mAb and/or in IL-15–deficient conditions. Concomitantly with the inhibition of SP, anti–IL-6R mAb significantly inhibited the induction of CD8+ T cell–dependent autoimmune colitis. Notably, the transfer of naive CD8+ T cells derived from IL-17−/− mice did not induce autoimmune colitis. Thus, we conclude that IL-6 signaling is crucial for SP under lymphopenic conditions, which subsequently caused severe IL-17–producing CD8+ T cell–mediated autoimmune colitis. We suggest that anti–IL-6R mAb may become a promising strategy for the therapy of colitis
Identification of novel helper epitopes of MAGE-A4 tumour antigen: useful tool for the propagation of Th1 cells
MAGE-A4 has been considered as an attractive cancer-testis (CT) antigen for tumour immunotherapy. It has been well accepted that T-helper type 1 (Th1) cell-dominant immunity is critical for the successful induction of antitumour immunity in a tumour-bearing host. The adoptive Th1 cell therapy has been shown to be an attractive strategy for inducing tumour eradication in mouse systems. However, Th1-cell therapy using human tumour-specific Th1 cells, which were expanded from peripheral blood mononuclear cells (PBMCs) in a clinically useful protocol, has never been performed. Here, we first identified MAGE-A4-derived promiscuous helper epitope, peptide (MAGE-A4 280–299), bound to both HLA-DPB1*0501 and DRB1*1403. Using the peptide, we established a suitable protocol for the propagation of MAGE-A4-specific Th1 cells in vitro. Culture of CD4+ T cells with IFN-γ-treated PBMC-derived adherent cells in the presence of helper epitope peptide resulted in a great expansion of MAGE-A4-reactive Th cells producing IFN-γ , but not IL-4. Moreover, it was shown that ligation of MAGE-A4-reactive Th1 cells with the cognate peptide caused the production of IFN-γ and IL-2. Thus, our identified MAGE-A4 helper epitope peptide will become a good tool for the propagation of tumour-specific Th1 cells applicable to adoptive immunotherapy of human cancer
Tumors attenuating the mitochondrial activity in T cells escape from PD-1 blockade therapy
PD-1 blockade therapy has revolutionized cancer treatments. However, a substantial population of patients is unresponsive. To rescue unresponsive patients, the mechanism of unresponsiveness to PD-1 blockade therapy must be elucidated. Using a ‘bilateral tumor model’ where responsive and unresponsive tumors were inoculated into different sides of the mouse belly, we demonstrated that unresponsive tumors can be categorized into two groups: with and without systemic immunosuppressive property (SIP). The SIP-positive tumors released uncharacterized, non-proteinaceous small molecules that inhibited mitochondrial activation and T cell proliferation. By contrast, the SIP-negative B16 tumor escaped from immunity by losing MHC class I expression. Unresponsiveness of SIP-positive tumors was partially overcome by improving the mitochondrial function with a mitochondrial activator; this was not successful for B16, which employs immune ignorance. These results demonstrated that the ‘bilateral tumor model’ was useful for stratifying tumors to investigate the mechanism of unresponsiveness and develop a strategy for proper combination therapy
B cell-derived GABA elicits IL-10⁺ macrophages to limit anti-tumour immunity
GABAを標的とする抗腫瘍免疫機構 --代謝産物を介した免疫細胞間制御の一端を解明--. 京都大学プレスリリース. 2021-11-10.Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8⁺ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses
Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity.
Memory CD8 T cells can provide long-term protection against tumors, which depends on their enhanced proliferative capacity, self-renewal and unique metabolic rewiring to sustain cellular fitness. Specifically, memory CD8 T cells engage oxidative phosphorylation and fatty acid oxidation to fulfill their metabolic demands. In contrast, tumor-infiltrating lymphocytes (TILs) display severe metabolic defects, which may underlie their functional decline. Here, we show that overexpression of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis (MB), favors CD8 T cell central memory formation rather than resident memory generation. PGC-1α-overexpressing CD8 T cells persist and mediate more robust recall responses to bacterial infection or peptide vaccination. Importantly, CD8 T cells with enhanced PGC-1α expression provide stronger antitumor immunity in a mouse melanoma model. Moreover, TILs overexpressing PGC-1α maintain higher mitochondrial activity and improved expansion when rechallenged in a tumor-free host. Altogether, our findings indicate that enforcing mitochondrial biogenesis promotes CD8 T cell memory formation, metabolic fitness, and antitumor immunity in vivo
Genotype-Dependent Tumor Regression in Marek’s Disease Mediated at the Level of Tumor Immunity
Marek’s disease (MD) of chickens is a unique natural model of Hodgkin’s and Non Hodgkin’s lymphomas in which the neoplastically-transformed cells over-express CD30 (CD30hi) antigen. All chicken genotypes can be infected with MD virus and develop microscopic lymphomas. From 21 days post infection (dpi) microscopic lymphomas regress in resistant chickens but, in contrast, they progress to gross lymphomas in susceptible chickens. Here we test our hypothesis that in resistant chickens at 21 dpi the tissue microenvironment is pro T-helper (Th)-1 and compatible with cytotoxic T lymphocyte (CTL) immunity but in susceptible lines it is pro Th-2 or pro T-regulatory (T-reg) and antagonistic to CTL immunity. We used the B2, non-MHC-associated, MD resistance/susceptibility system (line [L]61/line [L]72) and quantified the levels of key mRNAs that can be used to define Th-1 (IL-2, IL-12, IL-18, IFNγ), Th-2 (IL-4, IL-10) and T-reg (TGFβ, GPR-83, CTLA-4, SMAD-7) lymphocyte phenotypes. We measured gene expression in both whole tissues (represents tissue microenvironment and tumor microenvironment) and in the lymphoma lesions (tumor microenvironment) themselves. Gene ontology-based modeling of our results shows that the dominant phenotype in whole tissue as well as in microscopic lymphoma lesions, is pro T-reg in both L61 and L72 but a minor pro Th-1 and anti Th-2 tissue microenvironment exists in L61 whereas there is an anti Th-1 and pro Th-2 tissue microenvironment in L72. The tumor microenvironment per se is pro T-reg, anti Th-1 and pro Th-2 in both L61 and L72. Together our data suggests that the neoplastic transformation is essentially the same in both L61 and L72 and that resistance/susceptibility is mediated at the level of tumor immunity in the tissues
An In Situ Autologous Tumor Vaccination with Combined Radiation Therapy and TLR9 Agonist Therapy
PURPOSE:Recent studies have shown that a new generation of synthetic agonist of Toll-like receptor (TLR) 9 consisting a 3'-3'-attached structure and a dCp7-deaza-dG dinucultodie shows more potent immunostimulatory effects in both mouse and human than conventional CpG oligonucleotides. Radiation therapy (RT) provides a source of tumor antigens that are released from dying, irradiated, tumor cells without causing systemic immunosuppression. We, therefore, examined effect of combining RT with a designer synthetic agonist of TLR9 on anti-tumoral immunity, primary tumor growth retardation and metastases in a murine model of lung cancer. METHODS:Grouped C57BL/6 and congenic B cell deficient mice (B(-/-)) bearing footpad 3LL tumors were treated with PBS, TLR9 agonist, control oligonucelotide, RT or the combination of RT and TLR9 agonist. Immune phenotype of splenocytes and serum IFN-γ and IL-10 levels were analyzed by FACS and ELISA, 24 h after treatment. Tumor growth, lung metastases and survival rate were monitored and tumor specific antibodies in serum and deposition in tumor tissue were measured by ELISA and immunofluorescence. RESULTS:TLR9 agonist expanded and activated B cells and plasmacytoid dendritic cells in wild-type mice and natural killer DCs (NKDCs) in B cell-deficient (B(-/-)) mice bearing ectopic Lewis lung adenocarcinoma (3LL). Combined RT with TLR9 agonist treatment inhibited 3LL tumor growth in both wild type and B(-/-) mice. A strong tumor-specific humoral immune response (titer: 1/3200) with deposition of mouse IgG auto-antibodies in tumor tissue were found in wildtype mice, whereas the number of tumor infiltrating NKDCs increased in B(-/-) mice following RT+ TLR9 agonist therapy. Furthermore, mice receiving combination therapy had fewer lung metastases and a higher survival than single treatment cohorts. CONCLUSIONS:Combination therapy with TLR9 agonist and RT induces systemic anti-tumoral humoral response, augments tumoral infiltration of NKDCs, reduces pulmonary metastases and improves survival in a murine model of 3LL cancer
- …