72 research outputs found

    Synthetic microparticles conjugated with VEGF165 improve the survival of endothelial progenitor cells via microRNA-17 inhibition

    Get PDF
    Several cell-based therapies are under pre-clinical and clinical evaluation for the treatment of ischemic diseases. Poor survival and vascular engraftment rates of transplanted cells force them to work mainly via time-limited paracrine actions. Although several approaches, including the use of soluble vascular endothelial growth factor (sVEGF)-VEGF165, have been developed in the last 10 years to enhance cell survival, they showed limited efficacy. Here, we report a pro-survival approach based on VEGF-immobilized microparticles (VEGF-MPs). VEGF-MPs prolong VEGFR-2 and Akt phosphorylation in cord blood-derived late outgrowth endothelial progenitor cells (OEPCs). In vivo, OEPC aggregates containing VEGF-MPs show higher survival than those treated with sVEGF. Additionally, VEGF-MPs decrease miR-17 expression in OEPCs, thus increasing the expression of its target genes CDKN1A and ZNF652. The therapeutic effect of OEPCs is improved in vivo by inhibiting miR-17. Overall, our data show an experimental approach to improve therapeutic efficacy of proangiogenic cells for the treatment of ischemic diseases.Soluble vascular endothelial growth factor (VEGF) enhances vascular engraftment of transplanted cells but the efficacy is low. Here, the authors show that VEGF-immobilized microparticles prolong survival of endothelial progenitors in vitro and in vivo by downregulating miR17 and upregulating CDKN1A and ZNF652

    Changes in circulating microRNA levels can be identified as early as day 8 of pregnancy in cattle

    Get PDF
    <div><p>Poor reproductive performance remains a major issue in the dairy industry, with low conception rates having a significant impact on milk production through extended calving intervals. A major limiting factor is the lack of reliable methods for early pregnancy diagnosis. Identification of animals within a herd that fail to conceive within 3 weeks after insemination would allow early re-insemination and shorten calving intervals. In a previous study, we found an increase in plasma miR-26a levels in Day 16-pregnant relative to non-pregnant heifers, however changes in miRNA levels that early during pregnancy were very small which likely prevented the identification of robust biomarkers. In this study, we extended our analyses to a wider interval during pregnancy (Days 8 to 60, n = 11 heifers) with the rationale that this may facilitate the identification of additional early pregnancy miRNA biomarkers. Using small RNA sequencing we identified a total of 77 miRNAs that were differentially expressed on Day 60 relative to Day 0 of pregnancy. We selected 14 miRNAs for validation by RT-qPCR and confirmed significant differences in the expression of let-7f, let-7c, miR-30c, miR-101, miR-26a, miR-205 and miR-143 between Days 0 and 60. RT-qPCR profiling throughout Days 0, 8, 16 and 60 of pregnancy showed a distinct increase in circulating levels of miR-26a (3.1-fold, P = 0.046) as early as Day 8 of pregnancy. In summary, in contrast to earlier stages of pregnancy (≤ Day 24), marked differences in the levels of multiple miRNAs can be detected in circulation by Day 60 in cattle. Retrospective analyses showed miR-26a levels to be increased in circulation as early as Day 8, sooner than previously reported in any species, suggesting a biological role for this miRNA in the very early events of pregnancy.</p></div

    MicroRNAs as pharmacological targets in endothelial cell function and dysfunction

    Get PDF
    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific microRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. (c) 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    Improved repair of dermal wounds in mice lacking microRNA-155

    No full text
    Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155(-/-)) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155(-/-) mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155(-/-) mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process

    MicroRNA-16 and MicroRNA-424 Regulate Cell-Autonomous Angiogenic Functions in Endothelial Cells via Targeting Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1

    No full text
    Objective-MicroRNAs play key roles in modulating a variety of cellular processes by posttranscriptional regulation of their target genes. Vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR2), and fibroblast growth factor receptor-1 (FGFR1) were identified by bioinformatic approaches and subsequently validated as targets of microRNA (miR)-16 and miR-424 in endothelial cells (ECs). Methods and Results-Mimetics of these microRNAs reduced VEGF, VEGFR2, and FGFR1 expression, whereas specific antagonists enhanced their expression. Expression of mature miR-16 and miR-424 was upregulated on VEGF or basic fibroblast growth factor (bFGF) treatment. This upregulation was accompanied by a parallel increase in primary transcript (pri-miR)-16-1 and pri-miR-16-2 but not in pri-miR-424 levels, indicating a VEGF/bFGF-dependent transcriptional and posttranscriptional regulation of miR-16 and miR-424, respectively. Reduced expression of VEGFR2 and FGFR1 by miR-16 or miR-424 overexpression regulated VEGF and bFGF signaling through these receptors, thereby affecting the activity of downstream components of the pathways. Functionally, miR-16 or miR-424 overexpression reduced proliferation, migration, and cord formation of ECs in vitro, and lentiviral overexpression of miR-16 reduced the ability of ECs to form blood vessels in vivo. Conclusion-We conclude that these miRNAs fine-tune the expression of selected endothelial angiogenic mediators in response to these growth factors. Altogether, these findings suggest that miR-16 and miR-424 play important roles in regulating cell-intrinsic angiogenic activity of ECs. (Arterioscler Thromb Vasc Biol. 2011;31:2595-2606.

    Anisotropy of spin polarization and spin accumulation in Si/Al2O3/ferromagnet tunnel devices

    Get PDF
    The contribution of the spin accumulation to tunneling anisotropy in Si/Al2O3/ferromagnet devices was investigated. Rotation of the magnetization of the ferromagnet from in-plane to perpendicular to the tunnel interface reveals a tunneling anisotropy that depends on the type of the ferromagnet (Fe or Ni) and on the doping of the Si (n or p type). Analysis shows that different contributions to the anisotropy coexist. Besides the regular tunneling anisotropic magnetoresistance, we identify a contribution due to anisotropy of the tunnel spin polarization of the oxide/ferromagnet interface. This causes the spin accumulation to be anisotropic, i.e., dependent on the absolute orientation of the magnetization of the ferromagnet.

    Hematopoietic Akt2 deficiency attenuates the progression of atherosclerosis

    No full text
    Atherosclerosis is the major cause of death and disability in diabetic and obese subjects with insulin resistance. Akt2, a phosphoinositide-dependent serine-threonine protein kinase, is highly express in insulin-responsive tissues; however, its role during the progression of atherosclerosis remains unknown. Thus, we aimed to investigate the contribution of Akt2 during the progression of atherosclerosis. Wefound that germ-line Akt2 deficient mice develop similar atherosclerotic plaques as wild-type mice despite higher plasma lipids and glucose levels. It is noteworthy that transplantation of bonemarrow cells isolated from Akt2(-/-) mice to Ldlr(-/-) mice results in marked reduction of the progression of atherosclerosis compared with Ldlr(-/-) mice transplanted with wild-type bone marrow cells. In vitro studies indicate that Akt2 is required for macrophage migration in response to proatherogenic cytokines (monocyte chemotactic protein-1 and macrophage colony-stimulating factor). Moreover, Akt2(-/-) macrophages accumulate less cholesterol and have an alternative activated orM2-type phenotype when stimulated with proinflammatory cytokines. Together, these results provide evidence that macrophage Akt2 regulates migration, the inflammatory response and cholesterol metabolism and suggest that targeting Akt2 in macrophages might be beneficial for treating atherosclerosis
    • …
    corecore