12,600 research outputs found

    The state-contingent approach to production under uncertainty

    Get PDF
    The central claim of this paper is that the state-contingent approach provides the best way to think about all problems in the economics of uncertainty, including problems of consumer choice, the theory of the firm, and principalā€“agent relationships. This claim is illustrated by recent developments in, and applications of, the state-contingent approach.risk, state-contingent production, uncertainty, Risk and Uncertainty,

    A decreased probability of habitable planet formation around low-mass stars

    Get PDF
    Smaller terrestrial planets (< 0.3 Earth masses) are less likely to retain the substantial atmospheres and ongoing tectonic activity probably required to support life. A key element in determining if sufficiently massive "sustainably habitable" planets can form is the availability of solid planet-forming material. We use dynamical simulations of terrestrial planet formation from planetary embryos and simple scaling arguments to explore the implications of correlations between terrestrial planet mass, disk mass, and the mass of the parent star. We assume that the protoplanetary disk mass scales with stellar mass as Mdisk ~ f Mstar^h, where f measures the relative disk mass, and 1/2 < h < 2, so that disk mass decreases with decreasing stellar mass. We consider systems without Jovian planets, based on current models and observations for M stars. We assume the mass of a planet formed in some annulus of a disk with given parameters is proportional to the disk mass in that annulus, and show with a suite of simulations of late-stage accretion that the adopted prescription is surprisingly accurate. Our results suggest that the fraction of systems with sufficient disk mass to form > 0.3 Earth mass habitable planets decreases for low-mass stars for every realistic combination of parameters. This "habitable fraction" is small for stellar masses below a mass in the interval 0.5 to 0.8 Solar masses, depending on disk parameters, an interval that excludes most M stars. Radial mixing and therefore water delivery are inefficient in lower-mass disks commonly found around low-mass stars, such that terrestrial planets in the habitable zones of most low-mass stars are likely to be small and dry.Comment: Accepted to ApJ. 11 pages, 6 figure

    Active colloidal particles in emulsion droplets: A model system for the cytoplasm

    Full text link
    In living cells, molecular motors create activity that enhances the diffusion of particles throughout the cytoplasm, and not just ones attached to the motors. We demonstrate initial steps toward creating artificial cells that mimic this phenomenon. Our system consists of active, Pt-coated Janus particles and passive tracers confined to emulsion droplets. We track the motion of both the active particles and passive tracers in a hydrogen peroxide solution, which serves as the fuel to drive the motion. We first show that correcting for bulk translational and rotational motion of the droplets induced by bubble formation is necessary to accurately track the particles. After drift correction, we find that the active particles show enhanced diffusion in the interior of the droplets and are not captured by the droplet interface. At the particle and hydrogen peroxide concentrations we use, we observe little coupling between the active and passive particles. We discuss the possible reasons for lack of coupling and describe ways to improve the system to more effectively mimic cytoplasmic activity

    Origin of positive magnetoresistance in small-amplitude unidirectional lateral superlattices

    Full text link
    We report quantitative analysis of positive magnetoresistance (PMR) for unidirectional-lateral-superlattice samples with relatively small periods (a=92-184 nm) and modulation amplitudes (V_0=0.015-0.25 meV). By comparing observed PMR's with ones calculated using experimentally obtained mobilities, quantum mobilities, and V_0's, it is shown that contribution from streaming orbits (SO) accounts for only small fraction of the total PMR. For small V_0, the limiting magnetic field B_e of SO can be identified as an inflection point of the magnetoresistance trace. The major part of PMR is ascribed to drift velocity arising from incompleted cyclotron orbits obstructed by scatterings.Comment: 12 pages, 9 figures, REVTe

    Surface effects on nanowire transport: numerical investigation using the Boltzmann equation

    Full text link
    A direct numerical solution of the steady-state Boltzmann equation in a cylindrical geometry is reported. Finite-size effects are investigated in large semiconducting nanowires using the relaxation-time approximation. A nanowire is modelled as a combination of an interior with local transport parameters identical to those in the bulk, and a finite surface region across whose width the carrier density decays radially to zero. The roughness of the surface is incorporated by using lower relaxation-times there than in the interior. An argument supported by our numerical results challenges a commonly used zero-width parametrization of the surface layer. In the non-degenerate limit, appropriate for moderately doped semiconductors, a finite surface width model does produce a positive longitudinal magneto-conductance, in agreement with existing theory. However, the effect is seen to be quite small (a few per cent) for realistic values of the wire parameters even at the highest practical magnetic fields. Physical insights emerging from the results are discussed.Comment: 15 pages, 7 figure

    The (In)Stability of Planetary Systems

    Full text link
    We present results of numerical simulations which examine the dynamical stability of known planetary systems, a star with two or more planets. First we vary the initial conditions of each system based on observational data. We then determine regions of phase space which produce stable planetary configurations. For each system we perform 1000 ~1 million year integrations. We examine upsilon And, HD83443, GJ876, HD82943, 47UMa, HD168443, and the solar system (SS). We find that the resonant systems, 2 planets in a first order mean motion resonance, (HD82943 and GJ876) have very narrow zones of stability. The interacting systems, not in first order resonance, but able to perturb each other (upsilon And, 47UMa, and SS) have broad regions of stability. The separated systems, 2 planets beyond 10:1 resonance, (we only examine HD83443 and HD168443) are fully stable. Furthermore we find that the best fits to the interacting and resonant systems place them very close to unstable regions. The boundary in phase space between stability and instability depends strongly on the eccentricities, and (if applicable) the proximity of the system to perfect resonance. In addition to million year integrations, we also examined stability on ~100 million year timescales. For each system we ran ~10 long term simulations, and find that the Keplerian fits to these systems all contain configurations which may be regular on this timescale.Comment: 37 pages, 49 figures, 13 tables, submitted to Ap

    Applications of polymer optical fibre grating sensors to condition monitoring of textiles

    Get PDF
    Fibre Bragg gratings (FBGs) in polymer optical fibres (POFs) have been used to measure the strain in a woven textile. FBGs in both POFs and silica optical fibres were attached to a woven textile specimen, and their performance characterised. It was demonstrated that the POF FBGs provide improved strain transfer coefficients and reduce local structural reinforcement compared to silica FBGs and therefore make a more suitable proposition for textile monitoring

    Effects of Spring Prescribed Fire in Expanding Pinyon-Juniper Woodlands on Seedling Establishment of Sagebrush Species

    Get PDF
    Pinyon and juniper trees are expanding into mountain sagebrush communities throughout their ranges. Fire is used to restore these sagebrush communities, but limited information is available on seedling establishment of native shrubs and herbs. We examined effects of spring prescribed fire in the Great Basin on emergence and survival of five species (Artemisia tridentata vaseyana, Festuca idahoensis, Poa secunda, Eriogonum umbellatum and Lupinus argenteus) common to these communities. Data were collected in three microsites (undertree, undershrub and interspace) on a burned and unburned site following a prescribed fire and on the unburned site the year prior to the fire. Soil temperature and moisture were collected on both sites and years. Emergence and survival of A. tridentata was low. Grasses had higher emergence and survival under trees in 2003 in the unburned site, reflecting the pre-burn distribution of these species. E. umbellatum had high emergence and survival regardless of site or microsite. L. argenteus had moderate emergence that was lowest on the burned site under trees and highest on the unburned site in interspaces. Burned soils were warmer than unburned soils. Undertree microsites on the unburned site were cooler than other microsites on both sites due to shading and insulation by needle mats. Soil moisture was generally higher on the burn site due to fewer shrubs and trees. Pinyon appeared to have a facilitative role for grass seedling establishment on both sites. Spring prescribed fire did not have a negative impact on emergence or survival in these mountain sagebrush communities. Low establishment of some species indicate higher seeding rates or repeated seeding may be required. Keywords: Great Basin, sagebrush ecosystems, restoration, revegetation, seedling emergence and survival, microenvironmental condition
    • ā€¦
    corecore