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The central claim of this paper is that the state-contingent approach provides the best
way to think about all problems in the economics of uncertainty, including problems
of consumer choice, the theory of the firm, and principal–agent relationships. This claim
is illustrated by recent developments in, and applications of, the state-contingent
approach.
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1. Introduction

 

Production is an uncertain business, and agricultural production more so than
most. The problem of uncertainty is a primary concern in relation to policy issues
ranging from the marketing of agricultural commodities to the allocation of water
in irrigation systems.

Two very different approaches have been taken to the analysis of production
under uncertainty. The general equilibrium theory, along with offshoots such as
modern finance theory, has been dominated by the state-contingent approach
pioneered by Arrow (1953) and Debreu (1952) (see also Arrow and Debreu 1954).
In microeconomic analysis, the dominant approach has been based on stochastic
production functions, or the formally equivalent case of a non-stochastic pro-
duction function for a producer facing stochastic prices. The seminal analysis
of the latter case was put forward by Sandmo (1971) and developed in the con-
text of production uncertainty by Just and Pope (1978) and a large number of
subsequent writers.

The crucial insight of Arrow and Debreu was that, if uncertainty is represented
by a set of possible states of nature, and uncertain outputs by vectors of state-
contingent commodities, production under uncertainty can be represented as a
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multi-output technology, formally identical to a non-stochastic technology.
Hence, the necessary and sufficient conditions for the existence and optimal-
ity of  equilibrium are not affected by the introduction of  uncertainty. On
the other hand, the empirical plausibility of  the relevant necessary and
sufficient conditions is significantly reduced by consideration of uncertainty.
In the absence of  uncertainty, the requirement that, for each commodity,
there should exist a market seems relatively innocuous. On the other
hand, the more general requirement that a market should exist for each
commodity in each possible state of nature is clearly not satisfied, even as an
approximation. Interest is therefore focused on the case when markets are
incomplete.

The approach inaugurated by Sandmo (1971) and Just and Pope (1978)
was seemingly much simpler. The basic analytical approach was to derive first-
order conditions for optimisation, then use the implicit function theorem to
characterise comparative static responses to changes in parameters such as
the mean price level. However, this approach is often intractable when
applied to multi-output production or to the case of non-linear incentives such as
those arising in principal–agent models.

Chambers and Quiggin (2000, p. i) claim that ‘the state-contingent approach
provides the best way to think about all problems in the economics of uncer-
tainty, including problems of consumer choice, the theory of the firm and
principal–agent relationships.’ The purpose of this paper is to restate this
claim, and to defend it in the light of recent developments in, and applications
of, the state-contingent approach.

 

2. The state-contingent model

 

The standard approach to the representation of production under uncertainty
is based on the concept of a stochastic production function, most commonly
represented in the form

 

z 

 

=

 

 f

 

(

 

x

 

,

 

 ε

 

), (1)

where 

 

z

 

 is a scalar output, 

 

x

 

 is a vector of inputs, and 

 

ε

 

 is a scalar random
shock, which may be conceived of  as an input from nature, such as rain-
fall. The stochastic production function model is presented in Gravelle and
Rees (2004, Chapter 19), with a summary of  the main comparative static
results.

Chambers and Quiggin (2000) argue that this representation is inflexible
and, in important respects, unrealistic, and argue for the use of an alternative
model, based on the notion of state-contingent production. This model originated
from Arrow (1953) and Debreu (1952) in the context of general equilibrium
theory. Gravelle and Rees (2004, Chapter 21) provide an accessible summary
of some of the properties of exchange and production economies with state-
contingent commodities.
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In the general state-contingent model, there are 

 

M

 

 distinct outputs, 

 

N

 

 dis-
tinct inputs, and 

 

S

 

 possible states of nature.

 

1

 

 Inputs  are committed 

 

ex
ante

 

 and fixed 

 

ex post.

 

 State-contingent outputs  are chosen 

 

ex ante

 

but produced 

 

ex post

 

. That is, if  state 

 

s

 

 is realised, and the 

 

ex ante

 

 output
choice is the matrix 

 

z

 

, the observed output is , which corresponds to
the 

 

M

 

 outputs produced in state 

 

s.

 

 Inputs that are variable 

 

ex post

 

 may be
regarded as negative state-contingent outputs, in which case we generalise to
allow 

 

z

 

s

 

 ∈ 
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.

 

 We denote by 1
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 ∈ 

 

R

 

S

 

 the unit vector with all entries equal to 1.
The formal structure may be considered as a two-period game with nature,

with periods denoted 0 and 1. In period 0, the producer commits inputs

 

.

 

 When nature reveals the state 

 

s

 

, the individual produces the output 

 

z

 

s

 

.
The technology of production determines the feasible strategies (

 

x

 

,

 

 z

 

)

 

.

 

Chambers and Quiggin (2000) show that a state-contingent technology
may be summarised in terms of the input correspondence, which maps state-
contingent output vectors into sets of  inputs that can produce that state-
contingent output matrix. Formally, it is defined by 

Intuitively, one can think of this input correspondence as yielding all input
combinations that are on or above the production isoquant for the state-
contingent output matrix 

 

z

 

.
Conversely, we can consider an output correspondence

which, in a sense, is the inverse of the input correspondence. Intuitively, one can
think of it as giving the state-contingent output matrices that are on or below a
state-contingent transformation curve. In what follows, we routinely restrict
attention to the case of a single stochastic output, so that 

 

M

 

 

 

=

 

 1

 

.

 

Technology may also be represented using the distance and benefit functions
commonly used in comparisons of productive efficiency. The distance function
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) is defined by:
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It is straightforward to extend the model presented here to the case of an infinite state
space (Chambers 2005; Chambers and Quiggin 2005; Racionero and Quiggin 2006). Marginal
cost may then be characterised by either Fréchet or Gateaux derivatives.
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2.1 Objectives

 

The welfare of producers depends on state-contingent consumption, which will
be denoted by 

 

y

 

, and on inputs 

 

x

 

. In general, producers are assumed to have an
objective of the form 

 

W

 

(

 

x

 

,

 

 y

 

) decreasing in the first argument and increasing
in the second. Consumption takes the general form 

 

y

 

 

 

=

 

 

 

a

 

 

 

+

 

 

 

r

 

, where 

 

a

 

 is returns
from asset holdings and 

 

r

 

 is revenue. In most cases, outputs are assumed to
be sold in competitive markets so 

 

r

 

 

 

=

 

 

 

pz

 

, where  is a state-contingent
output price vector, and 

 

pz

 

 is an element-wise product.
The cost of effort is summed up by an effort cost function 

 

g

 

(

 

x

 

). In the case
where all inputs are purchased in competitive markets, we have 

 

g

 

(
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=
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,
where  is an input price vector. Two special cases are of particular
interest. The first is the separable effort case

 

W

 

(

 

x

 

,

 

 y

 

) = w(y, π) − g(x)

where w is a concave utility function and π is a subjective probability distri-
bution. The second is the net returns case

W(x, y) = w(y − wx, π).

The most popular form for w is the expected-utility functional

w(y, π) = E[u (y)]

= Σsπsu (ys)

where u is a von Neumann–Morgenstern utility function. It is important
to emphasise, however, that the use of  the state-contingent approach does
not require the assumption of expected-utility preferences, or even of well-
defined subjective probabilities π. In fact, the symmetry between technology
and preferences has allowed conditions developed in the context of  state-
contingent production under uncertainty to be translated into corresponding
conditions on preferences under uncertainty, and, as a result, to new models
of preferences under uncertainty. This point is discussed further below.

2.2 Cost functions

The state-contingent representation of production under uncertainty is formally
identical to the standard representation of  a multiproduct technology. As
a result, it is possible to apply the toolkit developed in production theory
since the work of Shephard (1953, 1970), including cost and profit functions,
distance functions, and all the associated duality theory. The most useful
single tool has proved to be the cost function. The general form of the cost
function is

     p  ∈ ++RS

      w
N  ∈ ++R
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c(z) = inf{g(x):x ∈ X(z)}.

If  all inputs are purchased in competitive markets, a cost function may be
written as

c(w, z) = inf{wx:x ∈ X(z)}.

If, in addition, outputs are sold in competitive markets, we may define the
revenue–cost function

C(w, r, p) = inf{wx:x ∈X(z), pz ≥ r}.

Noting that consumption is, in general, given by a combination of revenue
from productive activity and income from asset holdings, so that y = a + r,
it is possible to extend these cost functions to take account of  the interac-
tion between production and finance decisions, as in Chambers and Quiggin
(2004).

3. The case for the state-contingent approach

The representation of production in terms of state-contingent production
theory is a natural generalisation of the standard modern theory of produc-
tion and therefore allows production under uncertainty to be treated in the
same way as production under certainty. It might be argued, however, that
this general representation is, in the words of Tobin’s (1969) criticism of state-
preference theory, ‘graceful but empty’. In this section, it will be argued that
there are numerous practical advantages to be realised by adopting the state-
contingent approach.

3.1 Stochastic production functions as a special case

The standard approach to the representation of production under uncertainty
is based on the concept of a stochastic production function, most commonly
represented in the form

z = f (x, ε), (2)

where z is a scalar output, x is a vector of inputs, and ε is a scalar random
shock, which may be conceived of as an input from nature, such as rainfall.
Chambers and Quiggin (1998) show that this is a special polar case of  the
general state-contingent technology, with some highly restrictive properties.
Using the state-contingent representation of the stochastic production func-
tion technology, it is possible to analyse the properties of the technology and
the extent to which results in the existing published work on production tech-
nology can be extended to more general technologies.
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To represent the polar case of stochastic production function in (2), set
M = 1 (a scalar output) and suppose that ε is a discrete random variable,
which may be represented as a real-valued mapping from the state space Ω =
{1, . . . S} to R, or, equivalently, as a vector in RS. Given free disposal of out-
puts, the technology may be represented by the constraints

zs ≤ f(x, εs), s ∈ Ω. (3)

The state-contingent input correspondence associated with (3) is

X(z) = {x:zs ≤ f(x, εs), s ∈ Ω}

= �s∈Ω {x:zs ≤ f(x, εs)}

= �s∈Ωx (zs; εs),

where x(zs; εs) may be interpreted as the ex post input set associated with the
production function for a given realisation of the random variable.

The dual cost structure for the stochastic production function specification
defined as,

c(w, z) = Min{wx:x ∈ �s∈Ω x(zs; εs)},

satisfies

c(w, z) ≥ Max{c(w, z1; ε1), . . . , c(w, zs; εs)}, (4)

where c(w, zs; εs) is the ex post cost function dual to x(zs; εs). There can exist
instances where the inequality in (4) is strict (Chambers and Quiggin 1998,
2000).

The limitations of the stochastic production function approach may be seen
by illustrating the output isoquants for the cases S = 2 and S = 3 (Figures 1
and 2). It can be seen from Figure 1 that the resulting technology is analogous to
the Leontief  or fixed-output-proportions technology that is a special case of
standard multi-output technologies. Figure 2 motivates the characterisation
of the stochastic production function technology as ‘output cubical’ (Chambers
and Quiggin 2000).

As Figures 1 and 2 suggest, if  the technology takes the form (3), the cost
function c (w, z) will not, in general, be differentiable as a function of z. As a
result, corner solutions will commonly arise. A necessary condition for differ-
entiability is that the number of inputs N should be at least as great as the
number of states S.

One interpretation of the condition N ≥ S may be derived from consideration
of state-allocable inputs. The state-contingent properties of stochastic production
functions with multiple inputs are considered further by Rasmussen (2003).
Rasmussen distinguishes between state-allocable and state-specific inputs and
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derives conditions for optimal input allocations. In effect, a state-allocable input
may be regarded as a primary input from which S distinct inputs to the
stochastic production may be derived according to the allocation made by
the producer. Hence, in Rasmussen’s analysis, the existence of at least one state-
allocable input guarantees that N ≥ S, and this is normally sufficient for
differentiability of the cost function.

In the case of production under uncertainty, there is a large and complex
published work on principal–agent relationships. Much of the complexity
results from the implicit assumption that the agent has a stochastic production
function technology with a single scalar input (effort). The fixed-output-
proportions property of this technology means that, if the principal can control
output in one state of nature (say, the worst), that principal can control the
agent’s effort, and therefore the output in all states of nature. This implausible
property allows for the construction of theoretically optimal incentive structures

Figure 1 Stochastic production function: S = 2.

Figure 2 Stochastic production S = 3. Output cubical output set.
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that can achieve first-best outcomes in situations of asymmetric information.
As shown by Quiggin and Chambers (1998), this result does not apply for general
state-contingent technologies.2

3.2 Consistency with general equilibrium and finance theory

The idea of state-contingent production was originally developed in the context
of general equilibrium theory, and the state-contingent representation is the
standard approach in models of  general equilibrium under uncertainty. It
follows that, in any problem concerning the implications of production
uncertainty for the existence, stability and optimality of general equilibrium,
it is appropriate to use the state-contingent representation.

In the modern context, a more significant, but closely related, advantage is
the fact that state-contingent production models have a structure that is logically
consistent with that of modern finance theory. The same set of states of nature
used to model production under uncertainty can be used to describe the spanning
properties of securities structures.

In the absence of a well-developed state-contingent theory of production,
most financial modellers have focused on the case of an endowment economy.
Attempts to introduce production uncertainty through stochastic production
functions have, not surprisingly, proved problematic.

In discussing the relationship between state-contingent production theory
and finance theory, it is necessary to address the (apparently widely held) mis-
conception that the applicability of state-contingent models depends on the
existence of a complete set of state-contingent markets, as claimed, for example,
by Shogren and Crocker (1999).

Chambers and Quiggin (2000) begin the analysis of state-contingent production
by examining the case when there are no financial markets, and therefore no
state-contingent claims. In subsequent chapters, a variety of financial instruments,
including forward and futures markets, crop insurance, and sharecropping
agreements, are examined. In none of these cases is the existence of a complete
set of state-contingent claims assumed or implied.

The unrealistic case of complete state-contingent markets is of little inter-
est in itself. However, the properties of the Pareto-optimal equilibrium that
arise in this case are of  interest as a benchmark for analysis. In particular,
in the presence of  complete state-contingent markets, preferences and pro-
duction decisions are separate. That is, each producer will choose the state-
contingent output vector that maximises net returns at the uniquely given
state-contingent prices, and will then use those returns to purchase the vector

2 The unsatisfactory properties of the standard principal–agent model have increased the
popularity of the approach favoured by Holmstrom and Milgrom (1987). In this approach, the
agent can vary inputs continuously over time, leading to an infinite-dimensional technology.
As noted above, a stochastic production is smooth (that is, continuously differentiable) if  the
dimensionality of the input set is greater than or equal to that of the state space.
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of  state-contingent consumption claims that maximises utility, given the
producer’s preferences.

Chambers and Quiggin (2003a) have examined conditions under which
this separation applies even in the absence of complete state-contingent claims.
It is well known, for example, that, with a nonstochastic production technology,
the existence of a forward market (with no transactions costs and unrestricted
short selling) is sufficient to ensure that all producers choose the output that
maximises expected profit at the given forward price. Chambers and Quiggin
(2003b) generalise this result to encompass technologies that are not inher-
ently risky, in the sense that a non-stochastic output vector minimises costs
for a given level of  expected output.3 Building on this insight, conditions
under which partial price stabilisation is, and is not, beneficial are derived.

3.3 Applicability of duality theory and modern production theory

Arguably the single most important development in the theory of cost and
production was Shephard’s (1953, 1970) discovery of the dual correspond-
ence between the production structure and the cost function. This discovery
has had important consequences at both an empirical and theoretical level.
Yet economists have struggled with attempts to extend duality theory to the
analysis of production under uncertainty.

State-contingent production under uncertainty, like production of com-
modities differentiated in time and space, is merely a special case of a general
multiple-input, multiple-output technology. Hence, as we demonstrate above,
the duality tools developed for the latter automatically apply to the former. This
proposition stated in this way appears self-evident, but the issue of whether
duality methods are applicable under uncertainty has remained shrouded
in confusion and conflicting claims. As argued above, and in more detail by
Chambers and Quiggin (1998, 2003c), provided input sets are closed and non-
empty, a well-behaved cost function can be derived from any stochastic pro-
duction or revenue function. The resulting cost function, in turn, is always dual
to a stochastic production structure exhibiting convexity of input sets and free
disposability of inputs. Hence, any stochastic production structure possessing
closed and non-empty input sets will be observationally equivalent to a sto-
chastic production structure possessing closed, convex, and input-disposable
input sets.

More generally, the state-contingent approach permits the application
of the entire panoply of techniques developed in modern published works on
production theory, including distance and benefit functions, generalised
concepts of  homotheticity and separability, and so on. An example of  the
interaction between the two approaches is Chambers et al. (2004).

3 The expectation here is calculated with respect to the same set of subjective probabilities
used to determine that the forward price is unbiased.
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3.4 Structural forms and reduced forms

Any given choice generates a state-contingent vector of outcomes that may
be described by a random variable.4 Many researchers have therefore chosen to
disregard the underlying state space, and analyse problems purely in terms of
choices over random variables. Working in these terms is what we are referring to
when we talk about the parameterised distribution approach.

The relationship between the parameterised distribution formulation and
the state-space representation of  the problem is analogous to that between
reduced forms and structural models in econometrics. The state-space repre-
sentation, which contains all the relevant information about the possible
states of nature, the input choices of the producers, and the possible range of
outcomes, corresponds to the structural form. The parameterised distribution
formulation, which confounds all these relationships into a simple relation-
ship between possible outcomes and inputs, corresponds to the reduced form.

As with the identification problem in econometrics, it is always possible, in
general, to derive a parameterised distribution formulation from any state-
space representation, but the reverse does not apply. In particular, as a general
rule, most parameterised distribution formulations may correspond to several
different state-space representations. This certainly achieves some economy
in representation and analysis just as reduced-form estimation achieves some
economy in econometric estimation. Unfortunately, the economy generally is
a false one because it is purchased at the cost of confounding causal factors
for any economic phenomena that may emerge in such models. As a result,
only limited comparative-static analysis can be undertaken in the parameter-
ised distribution formulation.

Other problems emerge with the parameterised distribution formulation
as well. For example, when specified in state-contingent terms, an uncertain
production technology may have reasonable properties, but when captured in
its reduced form, it may have unreasonable properties. For example, as shown
by Chambers and Quiggin (2000), a convex state-contingent production tech-
nology may give rise to non-convex sets of feasible random variables.

In economics, as elsewhere, an inappropriate choice of  problem repres-
entation usually leads to a complex and confusing analysis. By diverting
attention from the underlying state space and the richer information struc-
ture available therein, the parameterised distribution formulation has been an
obstacle to progress. In particular, in problems involving production under
uncertainty, it has further widened the gap between the theory of asymmetric
information and the general equilibrium tradition going back to Arrow and
Debreu.

4 This statement depends on the existence of well-defined subjective probabilities, and is
therefore valid subject to some relatively weak assumptions about preferences.
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3.5 Analogy between state-contingent production and choice under uncertainty

As has already been observed in relation to finance theory, there is a natural
symmetry between models of choice and models of production when both
are expressed in state-contingent terms. Hence, it is not surprising that tools
used to analyse production under uncertainty can be used to analyse choice under
uncertainty and vice versa. Quiggin and Chambers (1998) show that a wide
range of standard tools for the analysis of economic problems involving
uncertainty, including risk premiums, certainty equivalents, and the notions
of absolute and relative risk aversion, can be developed and applied without
making specific assumptions on functional form beyond the basic requirements
of monotonicity, transitivity, continuity, and the presumption that individuals
prefer certainty to risk.

The approach relies on the distance and benefit functions, described above
in relation to production under uncertainty, to characterise preferences rela-
tive to a given state-contingent vector of outcomes, and then derives results
directly from the properties of  these functions. The distance and benefit
functions are then used to derive absolute and relative risk premiums and
to derive conditions under which preferences display constant absolute risk
aversion (CARA) and constant relative risk aversion (CRRA). An immediate
by-product of this discussion is a result characterising preferences displaying
both CARA and CRRA. This result is then used to suggest several flexible
functional specifications of preferences satisfying both properties.

The analysis may be extended further using the concept of invariant risk
attitudes (Quiggin and Chambers 2004a). Invariant risk attitudes may be
represented by a function of two parameters, the mean and an index of risk-
iness that is both linear and translation-invariant (that is, unaffected by the
addition of riskless wealth). The paradigmatic instance of such an index is the
standard deviation. Using the results previously derived, Quiggin and Cham-
bers (2004a) show how many of the attractive properties of mean–variance
(or, more properly, mean–standard deviation) preferences may be generalised
to a large class of preference structures, which can be neatly characterised in
dual terms.

4. Policy applications

Because the state-contingent model of production under uncertainty is more
general, and, for most problems, more realistic than the stochastic production
function model, it is a superior tool for the analysis of policy problems involving
uncertainty. Two main approaches have proved useful. The first is to exploit
the fact that the stochastic production function model is a special case, and
examine the question of  whether results derived using that model can be
generalised to a larger class of production technologies, or whether they depend
crucially on the fixed-output-proportions property of the model. As economic
actors will seek to exploit arbitrage and substitution opportunities in response to
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changes in policy, policy prescriptions based on the assumption of fixed out-
put proportions are unlikely to prove robust. A second approach is to examine
problems that cannot easily be addressed (or at least have not been addressed)
using the standard tools of the stochastic production function model. Results for
a variety of special cases can then be derived.

A wide range of policy issues have been addressed using the state-contingent
model, including non-point-source pollution (Chambers and Quiggin 1997),
crop insurance (Chambers and Quiggin 2002), and social security reform
(Grant and Quiggin 2002). In this section, attention will be focused on a selection
of policy topics that illustrate a variety of features of the state-contingent model.

Quiggin and Chambers (2004b) examine drought policy in Australia. It is
increasingly recognised that, under Australian conditions, drought should
not be thought of as an unpredictable natural disaster. Rather, any rational
assessment of the states of nature under which farmers produce must allocate
a significant probability to low-rainfall states, including lengthy droughts. The
key issue in drought policy has been the problem of assisting farmers to deal
with the consequences of drought, while maintaining incentives to prepare
appropriately for drought conditions. A popular policy that fails this test is
the provision of fodder subsidies to producers who have insufficient pasture
to feed their livestock. Ex post, such policies relieve suffering, but ex ante, they
encourage overstocking and discourage measures to prepare against drought,
such as the purchase and storage of fodder at favourable prices.

Discussion of these problems has not, until recently, been assisted by formal
models of production under uncertainty. In the stochastic production function
approach, there is no way to model the idea that producers might take action
to increase their net returns in low-rainfall states of nature, at the cost of
lower returns in high-output states. Rather, an increase in scalar effort raises
output in every state of nature. Quiggin and Chambers (2004b) show how the
risk-reducing or risk-increasing properties of a range of drought policies may
be analysed in a state-contingent framework.

The problem of contract design is a central concern of modern economics.
However, the standard approach has produced complex models that tend to
yield implausible results. For a stochastic production function, output in every
state is degenerately determined by the effort level. Hence, once output in one
state is known, output in every other state is known. This does not seem like
a plausible description of most situations in which incentive schemes are
offered. If  the agent is told that he will be severely punished for falling below
some minimum target, but will receive no reward for performance above the
target level, it is natural to suppose that he will devote all his efforts to meeting
the minimum target. In the general state-contingent production framework,
this requires reallocating resources towards the least favourable state of nature
and away from all of the others. There have been a variety of attempts to overcome
this problem, but the appropriate response is to reformulate the assumptions
regarding the agent’s production technology. State-contingent models of
contract design have been applied to problems of point-source pollution (Quiggin
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and Chambers 1998), bioprospecting (Smith and Kumar 2002), and banking
regulation (Suwandi 1995).

The problem of price stabilisation has given rise to a large and complex
published works. These published works began with an air of paradox, gen-
erated by Oi’s (1961) finding that price instability is beneficial to producers.
This finding mirrored an earlier, previously neglected result of Waugh (1944)
for consumers. Samuelson (1972) responded to Oi by arguing that, in general,
a feasible buffer-stock mechanism would not stabilise prices at the mean, but
would yield benefits to consumers. A voluminous published work has sprouted
from this beginning.

A large number of papers analysed the implications of buffer-stock stabil-
isation under a wide range of assumptions. Much of these earlier published
works were superseded by Newbery and Stiglitz (1981). However, problems
remained. In particular, although much of the published work relied on the
traditional apparatus of supply and demand curves, and the associated surplus
measures, there was no clear understanding of what was required for stochas-
tic supply and demand to be represented by a curve. Chambers and Quiggin
(2003c) revisited the original Oi (1961) result and showed that a risk-neutral
firm possesses a state-independent supply curve if  and only if  the cost func-
tion is both additively separable and not inherently risky, in the sense that
increasing the riskiness of output, maintaining mean output fixed, always
leads to an increase in costs. This result leads to a more general characterisation
of the conditions under which partial price stabilisation benefits producers.

5. Empirical applications

Empirical application of the state-contingent approach has proved challeng-
ing. This is not because the approach is intractable, but because consideration
of the state-contingent representation reveals the difficulty of estimating pro-
duction technology in the face of endogenous producer responses to uncer-
tainty. To apply standard methods for the analysis of multi-output production
technologies to the problem set out above, we would require a dataset with
observations of the form (x, z). However, given that each observation is asso-
ciated with the realisation of some particular state s, observed data points are
of the form (x, zs). Most of the data that would be required for the application
of standard methods are unavailable, lost in the potentiality of unrealised
states of the world.

This problem can be assumed away with a standard stochastic production
function technology, with a single scalar input or with inputs separable from
state-contingent outputs. It has long been recognised, however, that such a
representation is inadequate for a serious empirical treatment of the prob-
lems of risk-averse producers facing an uncertain production technology. The
preferred approach has been the moment-based model of Just and Pope (1978)
in which input choices determine the mean and variance of output, with one
function determining the mean and a second determining the variance. More
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generally, one might consider third and higher moments, depending on the
availability of data.

Chambers and Quiggin (2002) show that the Just–Pope technology, like
any technology satisfying the minimal requirements of free disposability and
convexity, can be represented in state-contingent terms. If  the number of
moments is less than the number of states of nature, the Just–Pope technology
will give rise to a non-differentiable cost function. Conversely, any estimated
Just–Pope technology can be interpreted as arising from a state-contingent
model with two states of nature.

For a completely accurate representation of a problem involving uncertainty,
both the number of states of nature and the number of moments must be infinite
(or at least larger than the degrees of freedom granted by any feasible data set).
Hence, in empirical work, the number of states (or moments) included in the
model involves a trade-off  between parsimony and goodness-of-fit, just as is
the case with lag structures. There is no obvious reason to suppose that the trade-
off will differ for moments-based and state-based representations. This suggests that
the number of states used in state-contingent analysis should typically be fairly
small, say two or three, as is usually the case with moments-based analysis.

Regardless of the trade-off  that is made in choosing the number of states
of nature, the problem that only one state of nature is realised for any given
observation remains. Griffiths and O’Donnell (2004) use a maximum-likelihood
approach to resolve this problem, in the context of a frontier production model,
in which output may fall short of  the technical optimum because of  firm-
specific inefficiency. The underlying technology is state contingent. Observations
are assigned to one of three states of nature based on a maximum-likelihood
criterion.

A notable feature of this approach is that, compared with standard frontier
models, it yields a significant reduction in estimated levels of inefficiency.
Observations that might fall inside the frontier in a standard approach may
instead be modelled as arising from an unfavourable state of  nature. This
feature of the model addresses the concern that frontier models detect inefficiencies
when the enterprises concerned may simply have suffered an adverse shock
(O’Donnell et al. 2006).

This result has significant policy implications. Findings that a large number of
firms lie inside the efficiency frontier are commonly taken to imply that there
exists potential for beneficial policy interventions, or alternatively, that existing
interventions are contributing to inefficiency. A state-contingent analysis would
suggest that such inferences should be drawn with more care.

There are a wide range of potential enhancements to the approach pioneered
by Griffiths and O’Donnell (2004). For example, the number of states of nature
could be determined exogenously, using a likelihood ratio test approach. In addition,
instrumental variables such as observations on rainfall could be used in the
assignment of observations to states of nature.

Chambers (2004) uses the state-contingent approach to define stochastic
productivity indicators, which are applied to data for post-war US agriculture.
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Comparison with existing non-stochastic productivity indicators suggests
that properly accounting for the stochastic environment in which firms oper-
ate could have important empirical implications for measuring productivity
growth.

Chambers and Quiggin (2005) consider the implications of state-contingent
production for asset pricing. The crucial tool is a generalisation of  the cost
function, measuring the cost of generating a given revenue through a com-
bination of  production decisions and financial transactions. Using this
cost function, an equilibrium asset pricing relationship may be derived, in a
manner that is symmetrical with the usual consumption-based approach. The
model is estimated using annual US macroeconomic data on aggregate pro-
duction (gross domestic product) and its price, aggregate investment (gross
private domestic investment), unit labour cost, unit non-labour cost, stock price
returns (returns on the Standard & Poor’s 500), and returns on commercial
paper for the period 1929–1995. The implied technology shows increasing costs
in both the mean and variance of output, suggesting that demand variation is
the dominant source of fluctuations in aggregate output.

The state-contingent approach is also being applied in the context of
simulation. The central problems in management of  the Murray–Darling
river system relate to the variability and unpredictability of aggregate rain-
fall and to the way in which policy institutions act to allocate and manage
risk. The evolution of  these policy institutions is, itself, the subject of  con-
siderable uncertainty. Adamson et al. (2005) describe the development of a
simulation model aimed at representing these uncertainties in a state-contingent
framework.

6. Concluding comments

Chambers and Quiggin (2000, p. 357) concluded that ‘we have only scratched
the surface of  what can be achieved using state-contingent production
models.’ Developments since then have made the scratches a little deeper, and
have resolved some of the problems seen as obstacles to widespread applica-
tion of the state-contingent approach. In particular, some of the difficulties
surrounding empirical application of the model have been resolved, notably
by the work of Griffiths and O’Donnell (2004). The relationship between the
general state-contingent approach and the special case of technology derived
from a stochastic production function has been clarified. Substantial progress has
been made on integrating finance and production theory.

Despite this progress, there is room for more work than has been carried
out so far. There are a huge range of issues, from monopoly pricing under
uncertainty to financial intermediation that could profitably be explored using
the state-contingent approach. With improved tools, the range of empirical
applications that could be undertaken is almost limitless. Almost every problem
in economics involves uncertainty and, in almost every case, uncertainty is
best interpreted in a state-contingent framework.
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