2,119 research outputs found
Stability of the Submillimeter Brightness of the Atmosphere Above Mauna Kea, Chajnantor and the South Pole
The summit of Mauna Kea in Hawaii, the area near Cerro Chajnantor in Chile,
and the South Pole are sites of large millimeter or submillimeter wavelength
telescopes. We have placed 860 GHz sky brightness monitors at all three sites
and present a comparative study of the measured submillimeter brightness due to
atmospheric thermal emission. We report the stability of that quantity at each
site.Comment: 6 figure
An Experiment on Innovation and Collusion
This paper examines the relationship between product innovation and the success of price collusion using novel laboratory experiments. Average market prices in low innovation (LO) experiments are significantly higher than those in high innovation, but otherwise identical experiments. This price difference is attributed to LO experimental subjects\u27 greater common market experience. The data illustrate how collusion can be perceived as the only way to make it in LO markets where product innovation is not a viable strategy for increasing profits. They suggest that product homogeneity can be a proximate cause, and product innovation an ultimate cause, of collusion
Universal Power Law in the Noise from a Crumpled Elastic Sheet
Using high-resolution digital recordings, we study the crackling sound
emitted from crumpled sheets of mylar as they are strained. These sheets
possess many of the qualitative features of traditional disordered systems
including frustration and discrete memory. The sound can be resolved into
discrete clicks, emitted during rapid changes in the rough conformation of the
sheet. Observed click energies range over six orders of magnitude. The measured
energy autocorrelation function for the sound is consistent with a stretched
exponential C(t) ~ exp(-(t/T)^{b}) with b = .35. The probability distribution
of click energies has a power law regime p(E) ~ E^{-a} where a = 1. We find the
same power law for a variety of sheet sizes and materials, suggesting that this
p(E) is universal.Comment: 5 pages (revtex), 10 uuencoded postscript figures appended, html
version at http://rainbow.uchicago.edu/~krame
RDF Querying
Reactive Web systems, Web services, and Web-based publish/
subscribe systems communicate events as XML messages, and in
many cases require composite event detection: it is not sufficient to react
to single event messages, but events have to be considered in relation to
other events that are received over time.
Emphasizing language design and formal semantics, we describe the
rule-based query language XChangeEQ for detecting composite events.
XChangeEQ is designed to completely cover and integrate the four complementary
querying dimensions: event data, event composition, temporal
relationships, and event accumulation. Semantics are provided as
model and fixpoint theories; while this is an established approach for rule
languages, it has not been applied for event queries before
Timing molecular motion and production with a synthetic transcriptional clock
The realization of artificial biochemical reaction networks with unique functionality is one of the main challenges for the development of synthetic biology. Due to the reduced number of components, biochemical circuits constructed in vitro promise to be more amenable to systematic design and quantitative assessment than circuits embedded within living organisms. To make good on that promise, effective methods for composing subsystems into larger systems are needed. Here we used an artificial biochemical oscillator based on in vitro transcription and RNA degradation reactions to drive a variety of “load” processes such as the operation of a DNA-based nanomechanical device (“DNA tweezers”) or the production of a functional RNA molecule (an aptamer for malachite green). We implemented several mechanisms for coupling the load processes to the oscillator circuit and compared them based on how much the load affected the frequency and amplitude of the core oscillator, and how much of the load was effectively driven. Based on heuristic insights and computational modeling, an “insulator circuit” was developed, which strongly reduced the detrimental influence of the load on the oscillator circuit. Understanding how to design effective insulation between biochemical subsystems will be critical for the synthesis of larger and more complex systems
Catalysis of amide synthesis by RNA phosphodiester and hydroxyl groups
The functional groups found among the RNA bases and in the phosphoribose backbone represent a limited repertoire from which to construct a ribozyme active site. This work investigates the possibility that simple RNA phosphodiester and hydroxyl functional groups could catalyze amide bond synthesis. Reaction of amine groups with activated esters would be catalyzed by a group that stabilizes the partial positive charge on the amine nucleophile in the transition state. 2′-Amine substitutions adjacent to 3′-phosphodiester or 3′-hydroxyl groups react efficiently with activated esters to form 2′-amide and peptide products. In contrast, analogs in which the 3′-phosphodiester is replaced by an uncharged phosphotriester or is constrained in a distal conformation react at least 100-fold more slowly. Similarly, a nucleoside in which the 3′-hydroxyl group is constrained trans to the 2′-amine is also unreactive. Catalysis of synthetic reactions by RNA phosphodiester and ribose hydroxyl groups is likely to be even greater in the context of a preorganized and solvent-excluding catalytic center. One such group is the 2′-hydroxyl of the ribosome-bound P-site adenosine substrate, which is close to the amine nucleophile in the peptidyl synthesis reaction. Given ubiquitous 2′-OH groups in RNA, there exists a decisive advantage for RNA over DNA in catalyzing reactions of biological significance
Studies of the limit order book around large price changes
We study the dynamics of the limit order book of liquid stocks after
experiencing large intra-day price changes. In the data we find large
variations in several microscopical measures, e.g., the volatility the bid-ask
spread, the bid-ask imbalance, the number of queuing limit orders, the activity
(number and volume) of limit orders placed and canceled, etc. The relaxation of
the quantities is generally very slow that can be described by a power law of
exponent . We introduce a numerical model in order to understand
the empirical results better. We find that with a zero intelligence deposition
model of the order flow the empirical results can be reproduced qualitatively.
This suggests that the slow relaxations might not be results of agents'
strategic behaviour. Studying the difference between the exponents found
empirically and numerically helps us to better identify the role of strategic
behaviour in the phenomena.Comment: 19 pages, 7 figure
Recommended from our members
Instrumentation for high-efficiency, high-sensitivity actinide analysis
This is the final report of a 3-year project. We have developed a high-efficiency thermal ionization source that provides one to two orders of magnitude improvement in sample utilization efficiency in comparison with the traditional filament-type ion source currently used in thermal ionization mass spectrometry. This improved sample utilization efficiency results in a proportional increase in sample throughput and proportional decrease in analysis time. Coupling this source with a quadrupole mass spectrometer results in an instrument system for high-efficiency actinide analysis and other applications. In addition to its high efficiency, the sample used in this source can be much smaller than that in previous tube-type sources. The compact structure of the cavity makes it more applicable to any type of mass spectrometer and the whole instrument is small and transportable
- …