10 research outputs found

    Effects of Compost Manure on Soil Microbial Respiration, Plant-Available-Water, Peanut (Arachis hypogaea L.) Yield and Pre-Harvest Aflatoxin Contamination

    Get PDF
    Peanut production in Zambia is often characterized by low yields and high aflatoxin incidence in harvested kernels. Soil amendments such as farmyard manure have shown potential to increase yields and reduce pre-harvest aflatoxin incidence. The aim of the current study was to evaluate the effects of composted cattle manure on soil properties that relate to yield and pre-harvest aflatoxin contamination of peanut kernels. Research evaluated the effects of composted cattle manure on soil respiration, plant-available water (PAW), peanut yield and pre-harvest aflatoxin contamination in a field experiment conducted in two successive rain-fed cropping seasons starting in December, 2015 and ending in April 2017, in Chongwe District, Zambia. Six (6) levels of compost were incorporated into the top 10 cm of the soil at rates of 0, 4.5, 12.0, 19.5, 27.0, and 34.5 metric tons/ha 1 wk before planting. There was a strong positive relationship between levels of compost and soil microbial respiration (R2=0.84) and PAW (R2=0.86). Secondly, compost manure was associated with increases in pod (R2=0.65) and kernel (R2=0.61) yield. The kernel yield potential of the planted cultivar was achieved at the rate of 12 metric tons per ha. Thirdly, there was a reduction in total aflatoxin levels with increasing levels of compost (R2=0.85). The improvement in peanut yield and the decrease in aflatoxin concentrations in kernels can be attributed to the improvement in soil moisture retention capacity and soil microbial activity arising from manure amendments. This study demonstrated the potential of compost manure to increase soil microbial activity, PAW, peanut yield and minimize aflatoxin contamination at field level

    Effects of biochar and gypsum soil amendments on groundnut (Arachis hypogaea L.) dry matter yield and selected soil properties under water stress

    Get PDF
    The effects of amending soil with gypsum and biochar on groundnut chlorophyll concentration, water use efficiency (WUE), biomass yield and selected soil properties were investigated under water stress. Gypsum (CaSO4.2H2O) was applied at 0 and 200 kg/ha, groundnut shell biochar at 1, 2 and 4% w/w of soil, and water at 100, 70 and 40% of daily plant water requirement (PWR) as main, sub and sub-sub plots, respectively, in a split-split-plot design. Biochar neutralized the acid soil, significantly raising soil pH from 5 to 7.15 and increasing cation exchange capacity by 75%. Biochar amended at 1 and 2%, increased groundnut dry matter yield by 28%. The optimum biochar application rate for dry matter yield was 1.4% w/w. Biochar application at 4% and irrigation at 40% of PWR reduced the WUE by 45 and 50%, respectively. Chlorophyll concentration index was highest at 40% of PWR. The results suggest that biochar has potential to raise soil pH, increase moisture retention and improve crop performance. Applying water at 100% PWR can increase groundnut dry matter yields, while higher gypsum application rates may be required to affect crop performance

    Detection of Neutralizing Antibodies in COVID-19 Patients from Steve Biko Academic Hospital Complex: A Pilot Study

    Get PDF
    A correlation between neutralization activity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and protection against coronavirus disease 2019 (COVID-19) has been demonstrated by several studies. Here, we detect SARS-CoV-2 neutralizing antibody (NAB) production in COVID-19 patients from the Steve Biko Academic Hospital complex (SBAH), South Africa (SA). Samples from COVID-19 patients (mild to severe) were collected. SARS-CoV-2 rapid assays, genotyping (Delta and Omicron variants) and enzyme-linked immunosorbent assays (ELISA) were performed. IBM® Statistical Package for the Social Sciences (SPSS®) version 28 was used for inferential statistical analysis, and the data were presented using the Prism9 software (version 9.4.1). A total of 137 laboratory-confirmed COVID-19 patients, 12 vaccine recipients and 8 unvaccinated participants were evaluated. The production of SARS-CoV-2 NABs was observed in some of the COVID-19 cases, mainly in severe cases, although this should be noted with caution due to the small sample size of this pilot study. NABs were also observed in asymptomatic participants, with the most being found in recipients (n = 6) of the BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine. We found a strong presence of NABs in COVID-19 patients, specifically in mild and severe cases. Severe infection was associated with higher NAB production (82%).P.M thanks H2020-WIDESPREAD-2018-951921-ImmunoHUB for the financial support
    corecore