139 research outputs found

    Channel processes and its management on navigable rivers

    Get PDF
    Inland waterways are the sector of the economy that is most dependent on channel processes and their management to ensure safety and favourable conditions for navigation. The main goals of the river channel management are to improve the waterways in terms of navigation and, at the same time, to preserve the rivers as natural sites. The presented study defines the criteria for classification of rivers and river sections according to the complexity of channel processes, their forecasting and management. The classification of rivers as waterways has been provided based on the complexity of channel process management and designing of dredging works and investments aimed at improving the navigation conditions. Examples of this approach are given based on specific rivers of Russia

    Short-term dynamics of river water turbidity

    Get PDF
    An overview of the recently collected datasets of highly discrete water turbidity measurements has allowed for the first hydrological and geographical analysis of short-term fluctuations in water turbidity and the composition of suspended sediments. The novel methodology has been developed to estimate a value of TI, which is the ratio of the difference between the maximum and minimum turbidity for a short period of time (ΔTi) (1 hour with the measurement frequency of 20 minutes) and the total turbidity difference for the water regime phase under study (ΔT HE ). Higher TI values correspond to a greater contribution of diurnal (20-minute) turbidity fluctuations to the seasonal variability of sediment yield. Rivers have been grouped according to the value of water turbidity fluctuations within one hour (20-minute): glacier-fed rivers (the Tarfala, the Dzhankuat) (TI amounts to 0.17-0.22); volcanic rivers (0.22–0.25) and lowland rivers (the Selenga, the Western Dvina) (0.09

    A TOOLBOX FOR SEDIMENT BUDGET RESEARCH IN SMALL CATCHMENTS

    Get PDF
    © 2017, Lomonosov Moscow State University. All rights reserved. Sediment monitoring and assessment remain one of the most challenging tasks in fluvial geomorphology and water quality studies. As a response to various environmental and human disturbance effects, the main sources and pathways of the sediments transported within catchments, especially most pristine small one, may change. The paper discusses state-of-the-art in the sediment budget research for small catchments. We identified nine independent approaches in the sediment transport assessment and applied them in 11 catchments across Eurasia in the framework of an FP-7 Marie Curie-International Research Staff Exchange Scheme in 2012-2016. These methods were classified as: i) Field-based methods (In-situ monitoring of sediment transport;-Soil morphological methods and dating techniques; Sediment source fingerprinting; Sediment-water discharge relationships), ii) GIS and remote sensing approaches (Riverbed monitoring based on remote sensing/historical maps; parametrization of the channel sediment connectivity; Sediment transport remote sensing modeling), and iii) Numerical approaches (Soil erosion modeling and gully erosion (stochastic and empirical models); channel hydrodynamic modeling). We present the background theory and application examples of all selected methods. Linking fieldbased methods and datasets with numerical approaches, process measurements as well as monitoring can provide enhanced insights into sediment transfer and related water quality impacts. Adopting such integrated and multi-scale approaches in a sediment budget framework might contribute to improved understanding of hydrological and geomorphological responses

    A toolbox for sediment budget research in small catchments

    Get PDF
    © 2017, Lomonosov Moscow State University. All rights reserved. Sediment monitoring and assessment remain one of the most challenging tasks in fluvial geomorphology and water quality studies. As a response to various environmental and human disturbance effects, the main sources and pathways of the sediments transported within catchments, especially most pristine small one, may change. The paper discusses state-of-the-art in the sediment budget research for small catchments. We identified nine independent approaches in the sediment transport assessment and applied them in 11 catchments across Eurasia in the framework of an FP-7 Marie Curie-International Research Staff Exchange Scheme in 2012-2016. These methods were classified as: i) Field-based methods (In-situ monitoring of sediment transport;-Soil morphological methods and dating techniques; Sediment source fingerprinting; Sediment-water discharge relationships), ii) GIS and remote sensing approaches (Riverbed monitoring based on remote sensing/historical maps; parametrization of the channel sediment connectivity; Sediment transport remote sensing modeling), and iii) Numerical approaches (Soil erosion modeling and gully erosion (stochastic and empirical models); channel hydrodynamic modeling). We present the background theory and application examples of all selected methods. Linking fieldbased methods and datasets with numerical approaches, process measurements as well as monitoring can provide enhanced insights into sediment transfer and related water quality impacts. Adopting such integrated and multi-scale approaches in a sediment budget framework might contribute to improved understanding of hydrological and geomorphological responses

    Neutral H density at the termination shock: a consolidation of recent results

    Full text link
    We discuss a consolidation of determinations of the density of neutral interstellar H at the nose of the termination shock carried out with the use of various data sets, techniques, and modeling approaches. In particular, we focus on the determination of this density based on observations of H pickup ions on Ulysses during its aphelion passage through the ecliptic plane. We discuss in greater detail a novel method of determination of the density from these measurements and review the results from its application to actual data. The H density at TS derived from this analysis is equal to 0.087 \pm 0.022 cm-3, and when all relevant determinations are taken into account, the consolidated density is obtained at 0.09 \pm 0.022 cm-3. The density of H in CHISM based on literature values of filtration factor is then calculated at 0.16 \pm 0.04 cm-3.Comment: Submitted to Space Science Review

    Origin, Injection, and Acceleration of CIR Particles: Theory Report of Working Group 7

    Full text link
    On the basis of the observational picture established in the report of Mason, von Steiger et al. (1999) the status of theoretical models on origin, injection, and acceleration of particles associated with Corotating Interaction Regions (CIRs) is reviewed. This includes diffusive or first-order Fermi acceleration at oblique shocks, adiabatic deceleration in the solar wind, stochastic acceleration in Alfvén waves and oblique propagating magnetosonic waves, and shock surfing as possible injection mechanism to discriminate pickup ions from solar wind ions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43800/1/11214_2004_Article_248225.pd

    Magnetic fields in cosmic particle acceleration sources

    Full text link
    We review here some magnetic phenomena in astrophysical particle accelerators associated with collisionless shocks in supernova remnants, radio galaxies and clusters of galaxies. A specific feature is that the accelerated particles can play an important role in magnetic field evolution in the objects. We discuss a number of CR-driven, magnetic field amplification processes that are likely to operate when diffusive shock acceleration (DSA) becomes efficient and nonlinear. The turbulent magnetic fields produced by these processes determine the maximum energies of accelerated particles and result in specific features in the observed photon radiation of the sources. Equally important, magnetic field amplification by the CR currents and pressure anisotropies may affect the shocked gas temperatures and compression, both in the shock precursor and in the downstream flow, if the shock is an efficient CR accelerator. Strong fluctuations of the magnetic field on scales above the radiation formation length in the shock vicinity result in intermittent structures observable in synchrotron emission images. Resonant and non-resonant CR streaming instabilities in the shock precursor can generate mesoscale magnetic fields with scale-sizes comparable to supernova remnants and even superbubbles. This opens the possibility that magnetic fields in the earliest galaxies were produced by the first generation Population III supernova remnants and by clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review

    Новые данные о трансформации стока воды и наносов в дельте реки Лены по итогам экспедиционных измерений в августе 2022 г.

    Get PDF
    Field hydrological measurements were performed in the Lena River delta from the 10th to the 16th of August 2022. 25 values of water discharge and 58 suspended sediment concentrations (SSC) were measured, multiple chemical composition water samples were taken, along with samples of bottom and bank river sediments, and thermal abrasion coasts were highlighted. Particle size and chemical composition analyses of the sediment samples were carried out. The aim of the study was to estimate the water flow distribution in the delta and to determine the directional SSC, sediment particle size and chemical composition changes along the delta and inside the depth of the river flow, and define the roles of the local hydrological and morphological factors of river flow transformation. Moreover, field measurements are crucial for SSC estimation and monitoring based on satellite image data. The laboratory analyses included particle size definition in suspended and bottom sediment samples, organic matter and SSC definition. The August 2022 expedition results were compared to the previous surveys. It was established that the flow distribution around the Stolb island corresponds with that of 2016: the Bykovsky, Trophimovsky, Tumatsky and Oleneksky branches receive 24.9–25.5, 58–59.2, 6 and 6.6 % of the water discharge from the Kusur gauging station on the Lena River, respectively. However, the role of the Main channel was slightly overestimated. The new data includes water discharges in the branches around the Samoilovsky island and in the channel systems of the Oleneksky and Tumatsky branches. SSC was relatively low and amounted to around 12–24 mg/l, rising from the water surface to the bottom 1.2–2 times. SSC decreased along the course of the Oleneksky and Tumatsky branches (1.5 and 1.1 times, respectively) due to the ratio between SSC and the potential stream transport capacity. SSC rose along the course of the Bykovsky branch, even though it wasn’t shown by the Landsat-8 satellite image (16th of August 2022). A significant sediment source in the delta are eroded and thermo eroded shores of the edoma island systems. The average sediment size proved to be from 0.011 to 0.019 mm. SSC does not vary much around the main channel and the nearest branches. Important relations between SSC, optical turbidity and ADCP backscatter intensity were estimated. The coarse diameter of 30 bottom sediment samples was 0.46 mm. The largest sediments were discovered in the Bykovsky branch, while the smallest sediments were found in the smaller transverse branches. Along the Tumatsky and Oleneksky branches the bottom sediments alternate from fine to medium sands.Статья содержит важные итоги полевых и комплексных гидрологических исследований, проводившихся в дельте р. Лены с 10 по 16 августа 2022 г. Были измерены 25 расходов воды и концентрации взвесей вбречных водах, отобраны пробы воды, образцы донного и берегового грунтов на гранулометрический и химический состав, отмечены размываемые берега. Целью исследований было изучение распределениябстока воды и наносов Лены между дельтовыми рукавами, изменений мутности воды, гранулометрического и химического состава наносов от вершины к морскому краю дельты, по глубине и ширине потока, роли в них местных гидролого-морфологических и термоабразионных процессов. Полученные натурные данные необходимы для познания особенностей современного рассредоточения стока воды и наносов в огромной и многорукавной дельте Лены, его изменений с момента последних стационарных и экспедиционных измерений, для дешифрирования спутниковых снимков, разработки инструментария для пересчета поверхностных измерений в осредненные по сечению потока

    Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective

    Get PDF
    The Pan-Eurasian Experiment (PEEX) Science Plan, released in 2015, addressed a need for a holistic system understanding and outlined the most urgent research needs for the rapidly changing Arctic-boreal region. Air quality in China, together with the long-range transport of atmospheric pollutants, was also indicated as one of the most crucial topics of the research agenda. These two geographical regions, the northern Eurasian Arctic-boreal region and China, especially the megacities in China, were identified as a “PEEX region”. It is also important to recognize that the PEEX geographical region is an area where science-based policy actions would have significant impacts on the global climate. This paper summarizes results obtained during the last 5 years in the northern Eurasian region, together with recent observations of the air quality in the urban environments in China, in the context of the PEEX programme. The main regions of interest are the Russian Arctic, northern Eurasian boreal forests (Siberia) and peatlands, and the megacities in China. We frame our analysis against research themes introduced in the PEEX Science Plan in 2015. We summarize recent progress towards an enhanced holistic understanding of the land–atmosphere–ocean systems feedbacks. We conclude that although the scientific knowledge in these regions has increased, the new results are in many cases insufficient, and there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures, especially the lack of coordinated, continuous and comprehensive in situ observations of the study region as well as integrative data analyses, hindering a comprehensive system analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such analyses. We recognize new topics with an increasing importance in the near future, especially “the enhancing biological sequestration capacity of greenhouse gases into forests and soils to mitigate climate change” and the “socio-economic development to tackle air quality issues”

    Towards an advanced observation system for the marine Arctic in the framework of the Pan-Eurasian Experiment (PEEX)

    Get PDF
    The Arctic marine climate system is changing rapidly, which is seen in the warming of the ocean and atmosphere, decline of sea ice cover, increase in river discharge, acidification of the ocean, and changes in marine ecosystems. Socio-economic activities in the coastal and marine Arctic are simultaneously changing. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX). There is a need for more in situ observations on the marine atmosphere, sea ice, and ocean, but increasing the amount of such observations is a pronounced technological and logistical challenge. The SMEAR (Station for Measuring Ecosystem–Atmosphere Relations) concept can be applied in coastal and archipelago stations, but in the Arctic Ocean it will probably be more cost-effective to further develop a strongly distributed marine observation network based on autonomous buoys, moorings, autonomous underwater vehicles (AUVs), and unmanned aerial vehicles (UAVs). These have to be supported by research vessel and aircraft campaigns, as well as various coastal observations, including community-based ones. Major manned drifting stations may occasionally be comparable to terrestrial SMEAR flagship stations. To best utilize the observations, atmosphere–ocean reanalyses need to be further developed. To well integrate MA-PEEX with the existing terrestrial–atmospheric PEEX, focus is needed on the river discharge and associated fluxes, coastal processes, and atmospheric transports in and out of the marine Arctic. More observations and research are also needed on the specific socio-economic challenges and opportunities in the marine and coastal Arctic, and on their interaction with changes in the climate and environmental system. MA-PEEX will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.</p
    corecore