42 research outputs found

    Driving in Milli-G: The Flight Model of the MMX Rover Locomotion Subsystem and its Integration & Testing in the Rover

    Get PDF
    IDEFIX is a 25 kg four-wheeled rover that will explore the surface of the Martian Moon Phobos in 2027. The rover is jointly developed by the German Aerospace Center (DLR) and the Centre National d'Etudes Spatiales (CNES) and will be brought to Phobos within the Japan Aerospace Exploration Agency's (JAXA) Martian Moon eXploration (MMX) mission. Being the world's first wheeled system to drive in milli-gravity, IDEFIX's locomotion deserves special attention. This paper gives an overview of the locomotion subsystem (LSS) of the rover, which is entirely developed and built by the Robotics and Mechatronics Center of DLR (DLR-RMC). A representative LSS, mounted on an IDEFIX prototype, is shown in Figure 1. The LSS is tailored to the needs for the IDEFIX rover and the most important, sizing challenges and functional requirements are summarized. It is then shown how the final flight model (FM) design answers to these requirements. The assembly, integration and testing (AIT) with respect to the LSS consists of several steps of integration and testing at different facilities as well as a comprehensive test sequence once the rover is mostly integrated. Since the LSS is an important, interconnected and the functionally most complex subsystem of the rover, some functionalities could only be tested once the LSS was integrated into IDEFIX. These AIT aspects are therefore summarized in this paper as well

    Mobility on the Surface of Phobos for the MMX Rover - Simulation-aided Movement planning

    Get PDF
    The MMX Rover, recently named IDEFIX, will be the first wheeled robotic system to be operated in a milli-g environment. The mobility in this environment, particularly in combination with the interrupted communication schedule and the activation of on-board autonomous functions such as attitude control requires efficient planning. The Mobility Group within the MMX Rovers Team is tasked with proposing optimal solutions to move the rover safely and efficiently to its destination so that it may achieve its scientific goals. These movements combine various commands to the locomotion system and to the navigation systems developed by both institutions. In the mission's early phase, these actions will rely heavily on manual driving commands to the locomotion system until the rover behavior and environment assumptions are confirmed. Planning safe and efficient rover movements is a multi-step process. This paper focuses on the challenges and limitations in sequencing movements for a Rover on Phobos in the context of the MMX Mission. The context in which this process takes place is described in terms of available data and operational constraints

    MMX - development of a rover locomotion system for Phobos

    Get PDF
    The MMX mission (Martian Moons eXploration) is a robotic sample return mission of the JAXA (Japan Aerospace Exploration Agency), CNES (Centre National d'Etudes Spatiales ) and DLR (German Aerospace Center) for launch in 2024. The mission aims to answer the question on the origin of Phobos and Deimos which will also help to understand the material transport in the earliest period of our solar system and the most important question how was the water brought on Earth. Besides the MMX mothership (JAXA) which is responsible for sampling and sample return to Earth a small rover which is built by CNES and DLR shall land on Phobos for in-situ measurements similar to MASCOT (Mobile Asteroid Surface Scout) on Ryugu. The MMX rover is a four wheel driven autonomous system with a size of 41 cm x 37 cm x 30 cm and a weight of approx. 25 kg. Multiple science instruments and cameras are integrated in the rover body. The rover body is basically a rectangular box, attached at the sides are four legs with one wheel per leg. When the rover is detached from the mothership, the legs are folded together at the side of the rover body. When the rover has landed passively (no parachute, braking rockets) on Phobos, the legs are autonomously controlled to bring the rover in an upright orientation. One Phobos day lasts 7 earth hours, which gives for the total mission time of 3 earth months, the number of about 300 extreme temperature cycles. These cycles and the wide span of surface temperature between day and night are main design drivers for the rover. This paper gives a short overview on the MMX mission, the MMX rover and a detailed view on the development of the MMX rover locomotion subsystem

    MMX Rover Locomotion Subsystem - Development and Testing towards the Flight Model

    Get PDF
    Wheeled rovers have been successfully used as mobile landers on Mars and Moon and more such missions are in the planning. For the Martian Moon eXploration (MMX) mission of the Japan Aerospace Exploration Agency (JAXA), such a wheeled rover will be used on the Marsian Moon Phobos. This is the first rover that will be used under such low gravity, called milli-g, which imposes many challenges to the design of the locomotion subsystem (LSS). The LSS is used for unfolding, standing up, driving, aligning and lowering the rover on Phobos. It is a entirely new developed highly-integrated mechatronic system that is specifically designed for Phobos. Since the Phase A concept of the LSS, which was presented two years ago [1], a lot of testing, optimization and design improvements have been done. Following the tight mission schedule, the LSS qualification and flight models (QM and FM) assembly has started in Summer 2021. In this work, the final FM design is presented together with selected test and optimization results that led to the final state. More specifically, advances in the mechanics, electronics, thermal, sensor, firmware and software design are presented. The LSS QM and FM will undergo a comprehensive qualification and acceptance testing campaign, respectively, in the first half of 2022 before the FM will be integrated into the rove

    Torque and workspace analysis for flexible tendon driven mechanisms

    Get PDF
    Tendon driven mechanisms have been considered in robotic design for several decades. They provide lightweight end effectors with high dynamics. Using remote actuators it is possible to free more space for mechanics or electronics. Nevertheless, lightweight mechanism are fragile and unfortunately their control software can not protect them during the very first instant of an impact. Compliant mechanisms address this issue, providing a mechanical low pass filter, increasing the time available before the controller reacts. Using adjustable stiffness elements and an antagonistic architecture, the joint stiffness can be adjusted by variation of the tendon pre-tension. In this paper, the fundamental equations of m antagonistic tendon driven mechanisms are reviewed. Due to limited tendon forces the maximum torque and the maximum acheivable stiffness are dependent. This implies, that not only the torque workspace, or the stiffness workspace must be considered but also their interactions. Since the results are of high dimensionality, quality measures are necessary to provide a synthetic view. Two quality measures, similar to those used in grasp planning, are presented. They both provide the designer with a more precise insight into the mechanism

    Backstepping experimentally applied to an antagonistically driven finger with flexible tendons

    Get PDF
    The Hand Arm System of DLR is a complex mechatronic system built to approach the human in terms of dynamics and dexterity. Its fingers are antagonistically actuated by flexible tendons, resulting in a nonlinear flexible joint. The advantages of such a design are the high dynamics but more importantly the enhanced robustness. Nonlinear control methods have been developed in the community that are, at least in principle, applicable to such systems. However, because of the complexity of some methods, most works are focusing on simulations and do not consider the practical issues arising with hardware. Such issues are, for example, the need for derivatives or the use of large matrix inversions. In this paper, we adapt the backstepping method to the specific case of an antagonistic actuation. The modeling of the mechanism is followed by the design of the controller and the work is concluded by a set of experimental results on the hand of the Hand Arm System, the ”Awiwi hand”

    Design and Control of an anthropomorphic thumb robot prototype

    No full text
    The complexity of mechatronic systems is barrier for their diffusion. That is why robots have to be anthropomorphic to facilitate interaction with humans. Or, it is not possible to modify every objects in a house so robots must be adapted to the usual human environment. This explains why the importance of anthropomorphic hands is growing. Currently, several models are under research but none are deeply investigating the special role of the thumb. In this report, a thumb design, based on medical analysis, is proposed. With the help of a thumb surgeon, numerous medical articles dealing with thumb surgery have been merged. Not only the lengths and the forces must be carefully chosen but the stiffness must be adjustable. The tendon displacement, required for a motion under a specifc stiffness, can be calculated as a non linear optimisation problem. The tendon stiffness range can be optimised if a joint stiffness range is provided. An extension of the usual metrics shows that it is possible to compare thumb designs. The term of workspace has to be defined carefully otherwise the global results will not have much meaning. The use of the global metrics as optimisation parameters has to be done with care since they do not include technological constraints. The control of an intrinsically compliant mechanism differs from the classical manipulator control. To take advantage of the intrinsic stiffness behaviour, the control cannot be based on link side measurements. A link side position controller can be used to tackle the calibration and zeroing problems. The validity of a single block stiffness controller is exhibited through several experiments and simulations. The reports consolidates the fondations of thumb design. It helps the designer by providing standard values for forces, stiffness and lengths. It reduces the constraints by sorting biological and functional ones. It is now possible to move one step ahead, to concentrate on the configuration of the fingers in the hand and to develop new grasping strategies

    Modeling and control of an antagonistically actuated tendon driven anthropomorphic hand

    Get PDF
    Abstract: One of the major limitations of object manipulation with a robotic hand is the fragility of the hardware. This is one of the motivations for developing the new anthropomorphic and extremely robust Hand Arm System at the robotics and mecatronics center of DLR. The system is unique in terms of complexity, with 52 motors and more than 200 sensors, and also in terms of dynamics. Indeed, the system is mechanically compliant, thus offers the possibility to store and release energy, thereby providing two essential functions: The impacts are filtered and the dynamics are enhanced. This thesis focuses on the hand. It has 19 degrees of freedom, each being actuated by two flexible antagonistic tendons. Because the stiffnes of the tendons is not linear, it is possible to adjust the mechanical stiffness of the joints, similar to the co-contraction of human muscles, in order to adapt to a task. However, the stiffness adjustability rises new challenges in modeling and control. The state of the art usually focuses on the problems of tendon-driven systems or flexible joint robots but seldomly both simultaneously. In the first part, the modeling of the hand and the wrist is conducted. Several problems specific to tendon-driven systems are presented, such as the coupling matrices and the joint position estimation based on the tendon displacement. The second part focuses on the control of a single joint actuated by two flexible tendons. The distribution of the tendon forces and the correction of the effective stiffness are reported. Linear and nonlinear approaches are used and multiple experiments are realised to compare them. The major result is that the backstepping, a nonlinear control method

    Modélisation et contrôle d'une main anthropomorphe actionnée par des tendons antagonistes

    No full text
    One of the major limitations of object manipulation with a robotic hand is the fragility of the hardware.This is one of the motivations for developing the new anthropomorphic and extremely robust Hand Arm System at the robotics and mecatronics center of DLR.The system is unique in terms of complexity, with 52 motors and more than 200 sensors, and also in terms of dynamics.Indeed, the system is mechanically compliant, thus offers the possibility to store and release energy, thereby providing two essential functions: The impacts are filtered and the dynamics are enhanced.This thesis focuses on the hand. It has 19 degrees of freedom, each being actuated by two flexible antagonistic tendons. Because the stiffnes of the tendons is not linear, it is possible to adjust the mechanical stiffness of the joints, similar to the co-contraction of human muscles, in order to adapt to a task. However, the stiffness adjustability rises new challenges in modeling and control. The state of the art usually focuses on the problems of tendon-driven systems or flexible joint robots but seldomly both simultaneously.In the first part, the modeling of the hand and the wrist is conducted. Several problems specific to tendon-driven systems are presented, such as the coupling matrices and the joint position estimation based on the tendon displacement. The second part focuses on the control of a single joint actuated by two flexible tendons. The distribution of the tendon forces and the correction of the effective stiffness are reported. Linear and nonlinear approaches are used and multiple experiments are realised to compare them. The major result is that the backstepping, a nonlinear control method, can be used and provides the desired impedance behavior while guaranting closed-loop stability.Un des freins majeurs au développement de la manipulation d'objet avec une main robotisée est sans aucun doute leur fragilité. C'est l'une des raisons pour laquelle un système bras-main anthropomorphe, extrêmement robuste, est développé au centre de robotique et de mécatronique de DLR. Le système est unique à la fois par sa complexité, utilisant 52 moteurs et plus de200 capteurs, ainsi que par ses capacités dynamiques. En effet, ce nouveau système a la particularité d'être mécaniquement flexible ce qui offre la possibilité de stocker de l'énergie à court terme et remplit ainsi deux fonctions essentielles pour un robot humanoïde: les impacts sont filtrés et les performances dynamiques sont augmentées.Dans cette thèse, on se concentre plus particulièrement sur la main. Elle dispose de 19 degrés de liberté dont chacun est actionné par deux tendons flexibles antagonistes. La rigidité des tendons étant non linéaire il est possible, tout comme peut le faire l'être humain, de co-contracter les > et donc d'ajuster la rigidité des doigts afin de s'adapter au mieux aux tâches à effectuer. Cependant, cette flexibilité entraine de nouveau défis de modélisation et de contrôle. L'état de l'art se concentre majoritairement sur le problème de la répartition des forces internes ou du contrôle d'articulation flexible mais peu de travaux considèrent les deux problèmes simultanément.Le travail présenté dans la première partie de la thèse se concentre sur la modélisation de la main et du poignet. Les problématiques spécifiques aux systèmes actionnés par des tendons, tels que les matrices de couplage et l'estimation du déplacement des articulations à partir du déplacement des tendons, sont étudiées.La seconde partie se concentre sur le contrôle d'articulations actionnées par des tendons flexibles antagonistes. Les problèmes de distribution des forces internes et de correction de la rigidité perçue par l'utilisateur sont présentés.Des approches de contrôle linéaire et non linéaire sont utilisées et des expériences sont réalisées pour comparer ces approches. En particulier, il est montré que le >, une méthode de contrôle non linéaire peut être utilisée et permet d'obtenir le comportement d'impédance souhaité tout en garantissant la stabilité en boucle fermée
    corecore