315 research outputs found

    Intrinsic noise and discrete-time processes

    Full text link
    A general formalism is developed to construct a Markov chain model that converges to a one-dimensional map in the infinite population limit. Stochastic fluctuations are therefore internal to the system and not externally specified. For finite populations an approximate Gaussian scheme is devised to describe the stochastic fluctuations in the non-chaotic regime. More generally, the stochastic dynamics can be captured using a stochastic difference equation, derived through an approximation to the Markov chain. The scheme is demonstrated using the logistic map as a case study.Comment: Modified version accepted for publication in Phys. Rev. E Rapid Communications. New figures adde

    Modelling upper respiratory viral load dynamics of SARS-CoV-2.

    Get PDF
    Relationships between viral load, severity of illness, and transmissibility of virus are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with the control of the viral load. Neutralising antibodies correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralising antibodies. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions

    Analysis of blood and nasal epithelial transcriptomes to identify mechanisms associated with control of SARS-CoV-2 viral load in the upper respiratory tract

    Get PDF
    Objectives: The amount of SARS-CoV-2 detected in the upper respiratory tract (URT viral load) is a key driver of transmission of infection. Current evidence suggests that mechanisms constraining URT viral load are different from those controlling lower respiratory tract viral load and disease severity. Understanding such mechanisms may help to develop treatments and vaccine strategies to reduce transmission. Combining mathematical modelling of URT viral load dynamics with transcriptome analyses we aimed to identify mechanisms controlling URT viral load. Methods: COVID-19 patients were recruited in Spain during the first wave of the pandemic. RNA sequencing of peripheral blood and targeted NanoString nCounter transcriptome analysis of nasal epithelium were performed and gene expression analysed in relation to paired URT viral load samples collected within 15 days of symptom onset. Proportions of major immune cells in blood were estimated from transcriptional data using computational differential estimation. Weighted correlation network analysis (adjusted for cell proportions) and fixed transcriptional repertoire analysis were used to identify associations with URT viral load, quantified as standard deviations (z-scores) from an expected trajectory over time. Results Eighty-two subjects (50% female, median age 54 years (range 3–73)) with COVID-19 were recruited. Paired URT viral load samples were available for 16 blood transcriptome samples, and 17 respiratory epithelial transcriptome samples. Natural Killer (NK) cells were the only blood cell type significantly correlated with URT viral load z-scores (r = −0.62, P = 0.010). Twenty-four blood gene expression modules were significantly correlated with URT viral load z-score, the most significant being a module of genes connected around IFNA14 (Interferon Alpha-14) expression (r = −0.60, P = 1e-10). In fixed repertoire analysis, prostanoid-related gene expression was significantly associated with higher viral load. In nasal epithelium, only GNLY (granulysin) gene expression showed significant negative correlation with viral load. Conclusions: Correlations between the transcriptional host response and inter-individual variations in SARS-CoV-2 URT viral load, revealed many molecular mechanisms plausibly favouring or constraining viral replication. Existing evidence corroborates many of these mechanisms, including likely roles for NK cells, granulysin, prostanoids and interferon alpha-14. Inhibition of prostanoid production and administration of interferon alpha-14 may be attractive transmission-blocking interventions

    Microbial transformations of selenite by methane-oxidizing bacteria

    Get PDF
    Abstract Methane oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b are both able to reduce the toxic selenite (SeO32-) but not selenate (SeO42-) to red spherical nanoparticulate elemental selenium (Se0), which was characterised via EDX and EXAFS. The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can either transform Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions: cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology

    Assessing the variability in experimental hut trials evaluating insecticide-treated nets against malaria vectors.

    Get PDF
    Experimental hut trials (EHTs) are used to evaluate indoor vector control interventions against malaria vectors in a controlled setting. The level of variability present in the assay will influence whether a given study is well powered to answer the research question being considered. We utilised disaggregated data from 15 previous EHTs to gain insight into the behaviour typically observed. Using simulations from generalised linear mixed models to obtain power estimates for EHTs, we show how factors such as the number of mosquitoes entering the huts each night and the magnitude of included random effects can influence study power. A wide variation in behaviour is observed in both the mean number of mosquitoes collected per hut per night (ranging from 1.6 to 32.5) and overdispersion in mosquito mortality. This variability in mortality is substantially greater than would be expected by chance and should be included in all statistical analyses to prevent false precision of results. We utilise both superiority and non-inferiority trials to illustrate our methodology, using mosquito mortality as the outcome of interest. The framework allows the measurement error of the assay to be reliably assessed and enables the identification of outlier results which could warrant further investigation. EHTs are increasingly playing an important role in the evaluation and regulation of indoor vector control interventions so it is important to ensure that these studies are adequately powered. [Abstract copyright: © 2023 The Authors.

    (Re) Locating community in relationships: questions for public policy

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record.This paper argues that we should think of community as being about social relationships rather than a ‘thing’ that is ‘lost’, ‘found’ or ‘made’. The paper draws on the philosophy of Roberto Esposito and the sociology of David Studdert to highlight the overlaps in their approaches to community. Both argue that community is ontological, as unavoidably ‘with us’. The paper then draws upon two empirical examples to argue that this approach could enable a different kind of public policy in relation to community. Policy would focus on existing relationships as the starting point for any efforts to effect social change. The implications for contemporary debates about localism are explored at the end of the paper.I am very grateful to David Studdert and Valerie Walkerdine for inviting me to the workshop on community and localism held at Cardiff University in April 2014 that stimulated this special issue of Sociological Review. I am also very grateful to the Leverhulme Trust for the research funding and to Nick Coke, Tessy Britton and Laura Billings for their invaluable contributions to the arguments made. The comments from three referees, the editors and Patrick Devine-Wright were extremely helpful in improving the paper

    Environmental constraints on the production and removal of the climatically active gas dimethylsulphide (DMS) and implications for ecosystem modelling

    Full text link
    • …
    corecore