23 research outputs found

    Detecting RNA base methylations in single cells by in situ hybridization.

    Get PDF
    Methylated bases in tRNA, rRNA and mRNA control a variety of cellular processes, including protein synthesis, antimicrobial resistance and gene expression. Currently, bulk methods that report the average methylation state of ~104-107 cells are used to detect these modifications, obscuring potentially important biological information. Here, we use in situ hybridization of Molecular Beacons for single-cell detection of three methylations (m62A, m1G and m3U) that destabilize Watson-Crick base pairs. Our method-methylation-sensitive RNA fluorescence in situ hybridization-detects single methylations of rRNA, quantifies antibiotic-resistant bacteria in mixtures of cells and simultaneously detects multiple methylations using multicolor fluorescence imaging

    Imaging rRNA Methylation in Bacteria by MR-FISH

    No full text

    Radical S-adenosylmethionine enzymes: mechanism, control and function

    No full text
    The radical SAM superfamily of enzymes use an iron sulfur cluster to reduce S-adenosylmethionine, which leads to the formation of a highly reactive intermediate, usually the 50-deoxyadenosyl radical. This potent oxidant is able to functionalize relatively inert substrates, including unactivated C–H bonds. This reactivity is evidently useful, as radical SAM enzymes are widely distributed throughout metabolism and catalyze some of the most complex and elegant biotransformations. In the first part of this review, the focus is on the mechanism of radical formation, including the features shared across the family, followed by a discussion of recent evidence for variations in cluster binding motifs and the mechanism of radical formation. In the second part, we survey how radical SAM chemistry has been applied to biosynthesis

    High-level expression and reconstitution of active Cfr, a radical-SAM rRNA methyltransferase that confers resistance to ribosome-acting antibiotics

    No full text
    Cfr is a radical-SAM (S-adenosyl-l-methionine) enzyme that methylates the 8 position of 23S rRNA residue A2503 to confer resistance to multiple antibiotic classes acting upon the large subunit of the bacterial ribosome. Radical-SAM enzymes use an Fe–S cluster to generate the 5?-deoxyadenosyl (DOA) radical from SAM, enabling them to modify intrinsically unreactive centres such as adenosine C8. However, despite its mechanistic interest and clinical relevance, until recently Cfr remained little characterised. Accordingly we have used co-expression with the Azotobacter vinelandii isc operon, encoding genes responsible for Fe–S cluster biosynthesis, to express hexahistidine-tagged Cfr in Escherichia coli BL21Star, and purified the recombinant protein in a yield more than 20 times greater than has been previously reported. As aerobically purified, Cfr contains secondary structure, is monomeric in solution and has an absorbance spectrum suggestive of a 2Fe–2S cluster. After anaerobic purification a 4Fe–4S cluster is indicated, while on reconstitution with excess iron and sulphide a further increase in metal content suggests that an additional, most likely 4Fe–4S, cluster is formed. Acquisition of additional secondary structure under these conditions indicates that Fe–S clusters are of structural, as well as functional, importance to Cfr. In the presence of sodium dithionite reconstituted Cfr is both reducible and able to cleave SAM to 5?-deoxyadeonsine (DOA), demonstrating that the purified reconstituted enzyme has radical-SAM activity. Co-expression with isc proteins thus enables recombinant active Cfr to be obtained in yields that facilitate its future spectroscopic and structural characterisation.<br/

    Cysteine Methylation Controls Radical Generation in the Cfr Radical AdoMet rRNA Methyltransferase

    Get PDF
    The 'radical S-adenosyl-L-methionine (AdoMet)' enzyme Cfr methylates adenosine 2503 of the 23S rRNA in the peptidyltransferase centre (P-site) of the bacterial ribosome. This modification protects host bacteria, notably methicillin-resistant Staphylococcus aureus (MRSA), from numerous antibiotics, including agents (e.g. linezolid, retapamulin) that were developed to treat such organisms. Cfr contains a single [4Fe-4S] cluster that binds two separate molecules of AdoMet during the reaction cycle. These are used sequentially to first methylate a cysteine residue, Cys338; and subsequently generate an oxidative radical intermediate that facilitates methyl transfer to the unreactive C8 (and/or C2) carbon centres of adenosine 2503. How the Cfr active site, with its single [4Fe-4S] cluster, catalyses these two distinct activities that each utilise AdoMet as a substrate remains to be established. Here, we use absorbance and electron paramagnetic resonance (EPR) spectroscopy to investigate the interactions of AdoMet with the [4Fe-4S] clusters of wild-type Cfr and a Cys338 Ala mutant, which is unable to accept a methyl group. Cfr binds AdoMet with high (∼ 10 µM) affinity notwithstanding the absence of the RNA cosubstrate. In wild-type Cfr, where Cys338 is methylated, AdoMet binding leads to rapid oxidation of the [4Fe-4S] cluster and production of 5'-deoxyadenosine (DOA). In contrast, while Cys338 Ala Cfr binds AdoMet with equivalent affinity, oxidation of the [4Fe-4S] cluster is not observed. Our results indicate that the presence of a methyl group on Cfr Cys338 is a key determinant of the activity of the enzyme towards AdoMet, thus enabling a single active site to support two distinct modes of AdoMet cleavage

    Utilisation of AdoMet by Cfr.

    No full text
    <p>Cfr consumes two AdoMet equivalents per reaction cycle to support both methyl transfer to Cfr Cys338 (AdoMet<sup>1</sup>; step 1) and subsequently generation of the 5′dA⋅ radical (AdoMet<sup>2</sup>; step2).</p
    corecore